Abiotic Factors Associated with Abundance Dynamics and Antibiotic Multidrug Resistance of Escherichia coli and Enterococcus faecalis Isolated from Some Ombessa Aquatic Systems (Central Cameroon Region)
The present study conducted in the town of Ombessa aims to assess the influence of abiotic factors on the abundance dynamics and antibiotic susceptibility of Escherichia coli and Enterococcus faecalis isolated from some aquatic systems from February to July 2022, monthly samples were taken at 10 water points used by the population (8 groundwater points and 2 surface water points). Samples were analyzed for physico-chemical parameters such as temperature, pH, electrical conductivity. Bacteriological variables such as BHAM, E. coli and E. faecalis abundances were also assessed. Antibiotic susceptibility of E. coli and E. faecalis was assessed using 06 antibiotics using the Kirby-Bauer diffusion disk method. The results show that bacterial abundances were the highest in surface waters. Bacterial densities were the highest in May and the lowest in February. The average densities recorded were 3845 CFU/100mL for BHAM, 380 CFU/100mL for E. coli and 14 CFU/100mL for E. faecalis in groundwater; and 8583 CFU/100mL for BHAM, 6878 CFU/100mL for E. coli and 812 CFU/100mL for E. faecalis in surface water. Antibiotic susceptibility tests showed that these bacterial species are sensitive to Gentamicin, Chloramphenicol, Azithromycin and Ciprofloxacin. They are all resistant to Trimethoprim/Sulfamethoxazole, E. coli is resistant to Doxycycline and E. faecalis has an intermediate sensitivity to Gentamicin. Overall, the Multiresistance to Antibiotics (MRA) indices obtained were above 0.2, indicating the presence of multidrug resistance in bacterial communities. The physico-chemical properties of the water varied over time and space, but on the whole remained below the threshold values of WHO guidelines. The degree of linkage between abiotic water variables and bacteriological parameters has shown that bacterial densities are more abundant in rainy seasons and increased O2 levels favor bacterial growth, while TSS, CO2 and dissolved nitrate levels affect the sensitivity of these bacterial species to antibiotics.
References
[1]
Almeida, M. A., Cunha, M. A., & Dias, J. M. (2007). Bacterial Productivity Distribution during a Rainy Year in an Estuarine System. MicrobialEcology,53, 208-220. https://doi.org/10.1007/s00248-005-0082-6
[2]
American Public Health Association (APHA) (2017). Standard Methods forthe Examinationof Water and Wastewater (23rd ed., p. 1976). American Public Health Association, American Water Works Association and Water Environment Federation.
[3]
Anjum, M. F., Schmitt, H., Börjesson, S., Berendonk, T. U., Donner, E., Stehling, E. G. et al. (2021). The Potential of Using E. Coli as an Indicator for the Surveillance of Antimicrobial Resistance (AMR) in the Environment. CurrentOpinioninMicrobiology,64, 152-158. https://doi.org/10.1016/j.mib.2021.09.011
[4]
Arfao, T. A., Onana, M. F., Moungang, L. M., Tchuimaleu Emadjeu, J. B., Ta-matcho Kweyang, B. P., Noah Ewoti, O. V., Tchakonté, S., Chinche Belengfe, S., Ngan-do, T. S., & Nola, M. (2021). Distribution Patterns of Vibrionaceae Abundance on the Landing Stages in Coastal Area: Understanding the Influence of Physicochemical Variables by Using Multiple Linear Regression Models and Corrgram for Matrix Correlation. AfricanJournalofMicrobiologyResearch,15, 304-317.
[5]
Arnold, B. J., Huang, I., & Hanage, W. P. (2022). Horizontal Gene Transfer and Adaptive Evolution in Bacteria. NatureReviewsMicrobiology,20, 206-218. https://doi.org/10.1038/s41579-021-00650-4
[6]
Baleng, S. D., Noah Ewoti, O. V., Kenne, B. P. T., Metsopkeng, C. S., Djiala, M. R. T., Ladibé, P. et al. (2022). Seasonal Variation and Diversity of Bacteria of the Vibrio and Salmonella Genera Isolated in a Few Underground Water Points Developed in the Commune of NTUI (Mbam-Et-Kim Department, Center-Cameroon). InternationalJournalofResearch-Granthaalayah,10, 66-87. https://doi.org/10.29121/granthaalayah.v10.i10.2022.4815
[7]
Barbosa-Ribeiro, M., De-Jesus-Soares, A., Zaia, A. A., Ferraz, C. C. R., Almeida, J. F. A., & Gomes, B. P. F. A. (2016). Antimicrobial Susceptibility and Characterization of Virulence Genes of Enterococcus Faecalis Isolates from Teeth with Failure of the Endodontic Treatment. JournalofEndodontics,42, 1022-1028. https://doi.org/10.1016/j.joen.2016.03.015
[8]
Basavaraju, M., & Gunashree, B. S. (2022). Escherichia Coli: An Overview of Main Characteristics. In M. S. Erjavec (Ed.), Escherichia coli—OldandNewInsights. IntechOpen. https://doi.org/10.5772/intechopen.105508
[9]
Benz, S. A., Bayer, P., & Blum, P. (2017). Global Patterns of Shallow Groundwater Temperatures. EnvironmentalResearchLetters,12, Article ID: 034005. https://doi.org/10.1088/1748-9326/aa5fb0
Bugno, A., Almodóvar, A. A. B., & Pereira, T. C. (2010). Enumeration of Heterotrophic Bacteria in Water for Dialysis: Comparison of the Efficiency of Reasoner’2 Agar and Plate Count Agar. BrazilianJournalofMicrobiology,41, 15-18. https://doi.org/10.1590/s1517-83822010000100003
[12]
Cheyroux, A., & Rhalimi, M. (2014). Évolution de la sensibilité d’Escherichia coli (E. coli) aux antibiotiques dans un établissement de santé gériatrique. LePharmacienHospitalieretClinicien,49, 315-316. https://doi.org/10.1016/j.phclin.2014.10.028
[13]
Clinical and Laboratory Standards Institute (CLSI) (2020). Performance Standards for Antimicrobial Susceptibility Testing:SupplementM100 (30th ed.). Clinical and Laboratory Standards Institute.
[14]
Couvert, O., Divanac’h, M., Lochardet, A., Thuault, D., & Huchet, V. (2019). Modelling the Effect of Oxygen Concentration on Bacterial Growth Rates. FoodMicrobiology,77, 21-25. https://doi.org/10.1016/j.fm.2018.08.005
[15]
Eheth, J. S., Djimeli, C. L., Nana, P. A., Arfao, A. T., Ewoti, O. V. N., Moungang, L. M. et al. (2019). Less Effect of Wells Physicochemical Properties on the Antimicrobial Susceptibility Pseudomonas Aeruginosa Isolated in Equatorial Region of Central Africa. AppliedWaterScience,9, Article No. 30. https://doi.org/10.1007/s13201-019-0909-9
[16]
Elisante, E., & Muzuka, A. N. N. (2016). Sources and Seasonal Variation of Coliform Bacteria Abundance in Groundwater around the Slopes of Mount Meru, Arusha, Tanzania. EnvironmentalMonitoringandAssessment,188, Article No. 395. https://doi.org/10.1007/s10661-016-5384-2
[17]
Federal Office for the Environment (FOEN) (2022). Groundwater Temperature. https://www.bafu.admin.ch/bafu/en/home/themen/thema-wasser/wasser--fachinformationen/zustand-der-gewaesser/zustand-des-grundwassers/grundwassertemperatur.html
[18]
Giraffa, G. (2014). Enterococcus. In C. A. Batt, & M. L. Tortorello (Eds.), EncyclopediaofFoodMicrobiology (pp. 674-679). Elsevier. https://doi.org/10.1016/b978-0-12-384730-0.00098-7
[19]
Jackson, C. R., Fedorka-Cray, P. J., Jackson-Hall, M. C., & Hiott, L. M. (2005). Effect of Media, Temperature and Culture Conditions on the Species Population and Antibiotic Resistance of Enterococci from Broiler Chickens. LettersinAppliedMicrobiology,41, 262-268. https://doi.org/10.1111/j.1472-765x.2005.01749.x
[20]
Jiang, H., Lü, D., Chen, Z., Wang, X., Chen, J., Liu, Y. et al. (2011). High Prevalence and Widespread Distribution of Multi-Resistant Escherichia Coli Isolates in Pigs and Poultry in China. TheVeterinaryJournal,187, 99-103. https://doi.org/10.1016/j.tvjl.2009.10.017
[21]
Larsson, D. G. J., & Flach, C. (2022). Antibiotic Resistance in the Environment. NatureReviewsMicrobiology,20, 257-269. https://doi.org/10.1038/s41579-021-00649-x
[22]
Le Jallé, C., & Désille, D. (2008). Relever le défi de l’assainissement en Afrique, une composante clé de la gestion des ressources en eau. Programme Solidarité Eau (PS-Eau) pour le Partenariat Français pour l’Eau (PFE), plateforme des acteurs français du secteur de l’eau intervenant à l’international, «Déclaration commune Afrique-UE sur l’assainissement», Groupe de travail Afrique de l’Initiative européenne pour l’eau (EUWI).
[23]
Mandal, J., Acharya, N. S., Buddhapriya, D., & Parija, S. C. (2012). Antibiotic Resistance Pattern among Common Bacterial Uropathogens with a Special Reference to Ciprofloxacin Resistant Escherichia coli. The Indian Journal of Medical Research, 136, 842-849.
[24]
Manouore Njoya, A. (2023). RésistanceàquelquesantimicrobiensdesentérobactériesisoléesdeseauxsuperficiellesetsouterrainesàYaoundéetimportancedecertainsfacteursabiotiques. Master’s Thesis, Université de Yaoundé I.
[25]
Manouore Njoya, A., Poutoum, Y., Eheth, J. S., Tamnou Mouafo, E. B., Noah Ewoti, O. V. et al. (2021). Antibiotic Susceptibility of Four Enterobacteriaceae Strains (Enterobacter Cloacae, Citrobacter Freundii, Salmonella Typhi and Shigella Sonnei) Isolated from Wastewater, Surface Water and Groundwater in the Equatorial Zone of Cameroon (Central Africa). WorldJournalofAdvancedResearchandReviews,11, 120-137. https://doi.org/10.30574/wjarr.2021.11.1.0303
[26]
March, S. B., & Ratnam, S. (1986). Sorbitol-Macconkey Medium for Detection of Escherichia Coli O157:H7 Associated with Hemorrhagic Colitis. JournalofClinicalMicrobiology,23, 869-872. https://doi.org/10.1128/jcm.23.5.869-872.1986
[27]
Mavroidi, A., Miriagou, V., Liakopoulos, A., Tzelepi, Ε., Stefos, A., Dalekos, G. N. et al. (2012). Ciprofloxacin-Resistant Escherichia coli in Central Greece: Mechanisms of Resistance and Molecular Identification. BMCInfectiousDiseases,12, Article No. 371. https://doi.org/10.1186/1471-2334-12-371
[28]
Metsopkeng, C. S., Nougang, M. E., Nana, P. A., Arfao, A. T., Bahebeck, P. N., Djimeli, C. L. et al. (2020). Comparative Study of Moringastenopetala Root and Leaf Extracts against the Bacteria Staphyloccocusaureus Strain from Aquatic Environment. ScientificAfrican,10, e00549. https://doi.org/10.1016/j.sciaf.2020.e00549
[29]
Moungang, L. M., Nola, M., Noah Ewoti, O. V., Nougang, M. E., Lontsi Djimeli, C., Arfao, T., & Rv, N. N. (2013). Assessment of the Abundance of Staphylococcusaureus and Listeriamonocytogenes Adhered on Granitic and Basaltic Rock-Fragments Immersed in Wells, in the Equatorial Region in Cameroon (Central Africa). International Journal of Research in Chemistry and Environment, 1, 283-294.
[30]
Niemi, R. M., & Ahtiainen, J. (1995). Enumeration of Intestinal Enterococci and Interfering Organisms with Slanetz-Bartley Agar, KF Streptococcus Agar and the MUST Method. LettersinAppliedMicrobiology,20, 92-97. https://doi.org/10.1111/j.1472-765x.1995.tb01294.x
[31]
Noah Ewoti, O. V, Baleng S. D, Song Ott, S. R., Mboene Mboene, R., Ladibé, P., Djiala Tagne, M. R., Kolkosok Badouana, U., Yogne Poutum, Y., Noah, S. A., & Nola, M. (2023). Impact of Heavy Metal Residues on the Diversity of Bacteria Isolated from a Few Water Points in Areas of Agricultural Activity. GSCBiologicalandPharmaceuticalSciences,23, 60-74. https://doi.org/10.30574/gscbps.2023.23.3.0212
[32]
Noah Ewoti, O. V. (2012). Rétentiondesbactériesdanslesoletsurlesfragmentsderocheenmilieuaquatique:Influencedutypedecellulesetdequelquesparamètreschimiquesdel’environnement. Ph.D. Thesis, Université de Yaoundé I.
[33]
Noah Ewoti, O. V. N., Arfao, A. T., Baleng, S. D., Moungang, L. M., Metsopkeng, C. S., Kayo, R. P. T. et al. (2021a). Microbiological and Physicochemical Quality of Some Water Points in the Nkolafamba Subdivision (Center Region, Cameroon). InternationalJournalofBiologicalandChemicalSciences,15, 816-834. https://doi.org/10.4314/ijbcs.v15i2.32
[34]
Noah Ewoti, O. V., Arfao, T. A., Moungang, L. M., & Kolkossok Badouana, U. (2021b). Dynamics of Abundances of Vibrio sp in Some Rivers: Impact of Physicochemical Factors. InternationalJournalofCurrentResearch,13, 18599-18609.
[35]
Nola, M., Njine, T., Djuikom, E., & Foko, V. S. (2002). Faecal Coliforms and Faecal Streptococci Community in the Underground Water in an Equatorial Area in Cameroon (Central Africa): The Importance of Some Environmental Chemical Factors. Water Research, 36, 3289-3297. https://doi.org/10.1016/s0043-1354(02)00024-6
[36]
Nola, M., Njiné, T., Kemka, N., Togouet, S. H. Z., Menbohan, S. F., Monkiedje, A. et al. (2006b). Retention of Staphylococci and Total Coliforms during Wastewater Percolation through Equatorial Soil in Central Africa: The Role of the Soil Column near Soil Surface and That Closely above Groundwater Table. Water,Air,&SoilPollution,171, 253-271. https://doi.org/10.1007/s11270-005-9039-0
[37]
Nola, M., Njiné, T., Kemka, N., Togouet, S. H. Z., Servais, P., Messouli, M. et al. (2006a). Transfert des bactéries fécales vers une nappe phréatique à travers une colonne de sol en région équatoriale: Influence de la charge en eau appliquée en surface. Revuedessciencesdel’eau,19, 101-112. https://doi.org/10.7202/013044ar
[38]
Nola, M., Njine, T., Sikati, V. F., & Djuikom, E. (2001). Distribution de Pseudomonas aeruginosa et Aeromonas hydrophila dans les eaux de la nappe phréatique superficielle en zone équatoriale au Cameroun et relations avec quelques paramètres chimiques du milieu.. Revuedessciencesdel’eau,14, 35-53. https://doi.org/10.7202/705407ar
[39]
Nola, M., Noah Ewoti, O. V., Nougang, M. E., Krier, F., Chihib, N. E., Hornez, J. P., & Njiné, T. (2011). Assessment of the Hierarchical Involvement of Chemical Characteristics of Soil Layer Particles during Bacterial Retention in Central Africa. International JournalofEnvironmentandPollution,46, 178-198. https://doi.org/10.1504/ijep.2011.045478
[40]
Nougang, M. E., Nola, M., Djuikom, E., Noah Ewoti, O. V., Moungang, L. M., & Bessa, H. A. (2011). Abundance of Faecal Coliforms and Pathogenic E. coli Strains in Ground-Water in the Coastal Zone of Cameroon (Central Africa), and Relationships with Some Abiotic Parameters. Research Journal of Biological Sciences, 3, 622-632.
[41]
Obolski, U., & Hadany, L. (2012). Implications of Stress-Induced Genetic Variation for Minimizing Multidrug Resistance in Bacteria. BMCMedicine,10, Article No. 89. https://doi.org/10.1186/1741-7015-10-89
[42]
Pekárová, P., Tall, A., Pekár, J., Vitková, J., & Miklánek, P. (2022). Groundwater Temperature Modelling at the Water Table with a Simple Heat Conduction Model. Hydrology, 9, Article 185. https://doi.org/10.3390/hydrology9100185
[43]
Piscon, B., Pia Esposito, E., Fichtman, B., Samburski, G., Efremushkin, L., Amselem, S. et al. (2023). The Effect of Outer Space and Other Environmental Cues on Bacterial Conjugation. MicrobiologySpectrum,11, e03688-22. https://doi.org/10.1128/spectrum.03688-22
[44]
Reichardt, K., & Timm, L. C. (2020). Water Infiltration into the Soil. In K. Reichardt, & L. C. Timm (Éds.), Soil,PlantandAtmosphere: Concepts, Processes and Applications (pp. 217-240). Springer International Publishing. https://doi.org/10.1007/978-3-030-19322-5_11
[45]
Ritchie, H., & Roser, M. (2021). CleanWaterandSanitation.OurWorldinData. https://ourworldindata.org/water-access
Švec, P., & Devriese, L. A. (2015). Enterococcus. In W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund, & S. Dedysh (Éds.), Bergey’sManualofSystematicsofArchaeaandBacteria (pp. 1-25). Wiley.
[48]
Tutmez, B., Hatipoglu, Z., & Kaymak, U. (2006). Modelling Electrical Conductivity of Groundwater Using an Adaptive Neuro-Fuzzy Inference System. Computers&Geosciences,32, 421-433. https://doi.org/10.1016/j.cageo.2005.07.003
[49]
Wang, J., Fan, H., He, X., Zhang, F., Xiao, J., Yan, Z. et al. (2021). Response of Bacterial Communities to Variation in Water Quality and Physicochemical Conditions in a River-Reservoir System. GlobalEcologyandConservation,27, e01541. https://doi.org/10.1016/j.gecco.2021.e01541
[50]
WHO & UNICEF JMP (2021). Progresson Household Drinking Water, Sanitation and Hygiene 2000-2020:Five Years intotheSDGs.
[51]
WHO (2022). Drinking-Water. https://www.who.int/news-room/fact-sheets/detail/drinking-water
[52]
Zhang, X., Zheng, S., & Wang, R. (2020). Effect of Dissolved Oxygen Concentration (Microaerobic and Aerobic) on Community Structure and Activity of Culturable Heterotrophic Nitrifying Bacteria in Activated Sludge. ChemistryandEcology,36, 953-966. https://doi.org/10.1080/02757540.2020.1817402