全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Factors Influencing the Acidification Trends in Agriculture Soils: A Case Study of Slovakia

DOI: 10.4236/gep.2024.129015, PP. 269-282

Keywords: pH Value, Acidification, Climatic Region, Soil Type

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to evaluate the development of soil reaction values in 15 key localities of soil Partial Monitoring System from 1994 to 2023, and to identify the most important regional drivers of pH value development. Soil samples were collected from the depth 0 - 0.10 m yearly in the spring (5 samples from each locality). In the dry soil, samples were determined actively and exchanged soil reaction. The most significant negative changes (decreases of soil reaction) were determined in Haplic Stagnosols group and Cambisols group. The pH value in topsoil is primarily controlled by soil type and soil substrate, soil management and land use, and to a lesser extent by climatic region.

References

[1]  Act 220/2004 Zákon 220/2004 Z.Z. o ochrane a využívaní poľnohospodárskeho fondu v znení neskorších predpisov (Coll. on the conservation and use of ag-ricultural land as amended).
[2]  Bedrna, Z. (2003). Resistibility of Landscape to Acidification. Ekologia, 13, 77-86.
[3]  Birkhofer, K., & Wolters, V. (2011). The Global Relationship between Climate, Net Primary Production and the Diet of Spiders. Global Ecology and Biogeography, 21, 100-108.
https://doi.org/10.1111/j.1466-8238.2011.00654.x
[4]  Bloom, P. R., Skyllberg, U. L., & Sumner, M. E. (2005). Soil Acidity. In M. A. Tabatabai, D. L. Sparks, L. Al-Amoodi, & W. A. Dick (Eds.), Chemical Processes in Soils (pp. 411-459). Soil Science Society of America.
https://doi.org/10.2136/sssabookser8.c8
[5]  Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil Acidification and Liming Interactions with Nutrient and Heavy Metal Transformation and Bioavailability. Advances in Agronomy, 78, 215-272.
https://doi.org/10.1016/S0065-2113(02)78006-1
[6]  Čurlík a kol (2003). Pôdna reakcia a jej úprava. Suma print Bratislava.
[7]  Demo, M. et al. (1998). Usporiadanie a využívanie pôdy v poľnohospodárskej krajine. SPU, 1998.
[8]  Diehl, E., Sereda, E., Wolters, V., & Birkhofer, K. (2013). Effects of Predator Specialization, Host Plant and Climate on Biological Control of Aphids by Natural Enemies: A Meta-Analysis. Journal of Applied Ecology, 50, 262-270.
https://doi.org/10.1111/1365-2664.12032
[9]  Dominati, E., Mackay, A., Green, S., & Patterson, M. (2014). A Soil Change-Based Methodology for the Quantification and Valuation of Ecosystem Services from Agroecosystems: A Case Study of Pastoral Agriculture in New Zealand. Ecological Economics, 100, 119-129.
https://doi.org/10.1016/j.ecolecon.2014.02.008
[10]  Dominati, E., Patterson, M., & Mackay, A. (2010). A Framework for Classifying and Quantifying the Natural Capital and Ecosystem Services of Soils. Ecological Economics, 69, 1858-1868.
https://doi.org/10.1016/j.ecolecon.2010.05.002
[11]  Fabian, C., Reimann, C., Fabian, K., Birke, M., Baritz, R., Haslinger, E., & Team, T. G. P. (2014). GEMAS: Spatial Distribution of the pH of European Agricultural and Grazing Land Soil. Applied Geochemistry, 48, 207-216.
https://doi.org/10.1016/j.apgeochem.2014.07.017
[12]  Fischer, G., Van Velthuyzen, H. T., Shah, M. M., & Nachtergaele, F. O. (2002). Global Agroecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report RR-02-002.
[13]  Jaradat, A., & Boody, G. (2011). Modeling Agroecosystem Services under Simulated Climate and Land-Use Changes. International Scholarly Research Notices, 2011, Article ID: 568723.
https://doi.org/10.5402/2011/568723
[14]  Kobza, J., Barančíková, G., Dodok, R., Makovníková, J., Pálka, B., Styk, J., & Širáň, M. (2024). Monitoring of SR Soils. The Current State and Development of Monitored Properties of Soils as a Basis for Their Protection and Further use. Results of the Partial Monitoring System-Soil for the Period 2018-2022 (6th Cycle). 253 s. Bratislava: NPPC-VÚPOP, 2024.
[15]  Kolektív, H. (2011). Jednotné pracovné postupy rozborov pôd. VUPOP Bratislava.
[16]  Leblanc, M. A., Parent, E., & Parent, L. E. (2016). Lime Requirement Using Mehlich-III Extraction and Infrared-Inferred Cation Exchange Capacity. Soil Science Society of America Journal, 80, 490-501.
https://doi.org/10.2136/sssaj2015.07.0282
[17]  Leonardi, S. (1991). Indirect Effect of Acid Rain Mediated by Mineral Leaching: An Evaluation of Potential Roles of Leaching from the Canopy. In W. S. Longhurst (Ed.), Acid Deposition (pp. 123-140). Springer.
https://doi.org/10.1007/978-3-642-76473-8_9
[18]  Makovníková, J., Barančíková Dlapa, P. G., & Dercova, K. (2006). Anorganické kontaminanty v pôdnom ekosystéme. Rewiev. Chemické listy.
[19]  Makovníková, J., Barančíková, G., & Pálka, B. (2007). Approach to the Assessment of Transport Risk of Inorganic Pollutants Based on the Immobilisation Capability of Soil. Plant, Soil and Environment, 53, 365-373.
https://doi.org/10.17221/2215-PSE
[20]  Makovníková, J., Kološta, S., & Pálka, B. (2024). Possibilities for Assessing Ecosystem Services in an Agrarian Landscape. Pedosphere Research, 3, 65-82.
[21]  Makovníková, J., Pálka, B., Širáň, M., Kanianska, R., Kizeková, M., & Jaďuďová, J. (2017). Modelovanie a hodnotenie agroekosystémových služieb. Belianum. Vydavateľstvo Univerzity Mateja Bela v Banskej Bystrici.
[22]  MEA (Millennium Ecosystem Assessment) (2005). Ecosystems and Human Well-Being: Our Human Planet: Summary for Decision Makers (The Millennium Ecosystem Assessment). Island Press.
[23]  Meriño-Gergichevich, J. (2010). Al3+-Ca2+ Interaction in Plants Growing in Acid Soils: AL-Phytotoxicity Response to Calcareous Amendment. Journal of Soil Science and Plant Nutrition, 10, 217-243.
[24]  Montoya, J. M., & Raffaelli, D. (2010). Climate Change, Biotic Interactions and Ecosystem Services. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2013-2018.
https://doi.org/10.1098/rstb.2010.0114
[25]  Müller, H. S., Dechow, R., & Flessa, H. (2022). Inventory and Assessment of pH in Cropland and Grassland Soils in Germany. Journal of Plant Nutrition and Soil Science, 185, 145-158.
https://doi.org/10.1002/jpln.202100063
[26]  Orwin, K. H., & Wardle, D. A. (2004). A New Index for Quantifying the Resistance and Resilience of Soil Biota to Exogenous Disturbance. Soil Biology and Biochemistry, 36, 1907-1912.
https://doi.org/10.1016/j.soilbio.2004.04.036
[27]  WRB (2006). World Reference Base for Soil Resources 2006 (2nd ed.). World Soil Re-sources Reports No. 103. FAO.
[28]  Yang, Y., Wang, Y., Peng, Y., Cheng, P. F., Li, F. B., & Liu, T. X. (2020). Acid-Base Buffering Characteristics of Non-Calcareous Soils: Correlation with Physicochemical Properties and Surface Complexation Constants. Geoderma, 360, Article ID: 114005.
https://doi.org/10.1016/j.geoderma.2019.114005
[29]  Yong, R. N., Mohamed, A. M. O., & Warkentin, B. P. (1992). Principles of Contaminant Transport in Soils. Elsevier.
[30]  Zhu, Q., Liu, X., Hao, T., Zeng, M. F., Shen, J. B., Zhang, F. S., & De Vries, W. (2018). Modeling Soil Acidification in Typical Chinese Cropping Systems. Science of the Total Environment, 613-614, 1339-1348.
https://doi.org/10.1016/j.scitotenv.2017.06.257

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133