Bamako’s geographic and demographic expansion is sure to increase the need for water, and the slow development of the water supply network seems unable to meet this need. The knowledge of the approximate quantity of water reaching the groundwater is crucial, given the high dependence of this city and its surrounding area on groundwater. The aim of this study is to estimate the average groundwater recharge on a monthly scale, based on measurements taken over a 24-month period by using Water Table Fluctuation (WTF). The monthly recharge values obtained from the 15 piezometers in the study area by using WTF method vary from 1.04 to 38.81 mm with an average value of 9.74 mm. As part of the precipitations, these values represent respectively 1.29%, 48.52% and 12.17% of monthly average precipitation. It appears in this study that despite the piezometers belonging to the same climatic zone, the recharge rate can be different because of many factors such as the thickness of the aquifers, the soil and geology type, the local land cover and land use activities.
References
[1]
Addisie, M. B. (2022). Groundwater Recharge Estimation Using Water Table Fluctuation and Empirical Methods. H2Open Journal, 5, 457-468. https://doi.org/10.2166/h2oj.2022.026
[2]
Ajami, H. (2021). Geohydrology: Groundwater. In D. Alderton, & S. A. Elias (Eds.), Encyclopedia of Geology (pp. 408-415). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.12388-7
[3]
Alex Thomas, M. N. A., & Pankaj Kumar, M. T. A. (2021). Estimation of Groundwater Recharge by Water Budget Method in Conjunction with Water Table Fluctuation Method, Munger District, Bihar. International Journal of Current Microbiology and Applied Sciences, 10, 316-326. https://doi.org/10.20546/ijcmas.2021.1007.034
[4]
Allison, G. B. (1988). A Review of Some of the Physical, Chemical and Isotopic Techniques Available for Estimating Groundwater Recharge. In I. Simmers (Ed.), Estimation of Natural Groundwater Recharge (pp. 49-72). Springer. https://doi.org/10.1007/978-94-015-7780-9_4
[5]
Banton, O., Villeneuve, J.-P., Ait-Ssi, L., Alpha, A., Traoré, A. Z., & Mariko, A. (1991). Hydrogéologie et contamination de la nappe phréatiquealimentant la ville de Bamako (Mali). (R345; Issue R345). INRS-Eau. https://espace.inrs.ca/id/eprint/599/
[6]
Bear, J. (2012). Hydraulics of Groundwater. Courier Corporation.
[7]
Berehanu, B., Azagegn, T., Ayenew, T., & Masetti, M. (2017). Inter-Basin Groundwater Transfer and Multiple Approach Recharge Estimation of the Upper Awash Aquifer System. Journal of Geoscience and Environment Protection, 5, 76-98. https://doi.org/10.4236/gep.2017.53007
[8]
Blarasin, M., Quinodóz, F. B., Cabrera, A., Matteoda, E., Alincastro, N., & Albo, G. (2016). Weekly and Monthly Groundwater Recharge Estimation in a Rural Piedmont Environment Using the Water Table Fluctuation Method. International Journal of Environmental & Agriculture Research, 2, 104-113.
[9]
Cooper, D. J., Wolf, E. C., Ronayne, M. J., & Roche, J. W. (2015). Effects of Groundwater Pumping on the Sustainability of a Mountain Wetland Complex, Yosemite National Park, California. Journal of Hydrology: Regional Studies, 3, 87-105. https://doi.org/10.1016/j.ejrh.2014.10.002
[10]
Deg-Allier, R. (1963). Mesure de l’alimentationdirecte des nappes souterraines (p. 13). Bureau de Recherches Géologiques et Minières.
[11]
Diancoumba, O., Bokar, H., Toure, A., Kelome, N. C., & Preko, K. (2020). Characterization of Groundwater Recharge Using the Water Table Fluctuation Method in the Koda Catchment, Mali. International Journal of Advanced Earth Science and Engineering, 8, 665-681. https://doi.org/10.23953/cloud.ijaese.446
[12]
Diouf, C. (2012). Combined Uses of Water-Table Fluctuation (WTF), Chloride Mass Balance (CMB) and Environmental Isotopes Methods to Investigate Groundwater Recharge in the Thiaroye Sandy Aquifer (Dakar, Senegal). African Journal of Environmental Science and Technology, 6, 425-437. https://doi.org/10.5897/ajest12.100
[13]
DIWI Consult International (2000). Rapport final étude des Eaux Souterraines-Secteur Bamako.
[14]
DNH, P. (1990). Synthèsehydrogéologique du Mali.
[15]
Foster, S. S. D. (1988). Quantification of Groundwater Recharge in Arid Regions: A Practical View for Resource Development and Management. In I. Simmers (Ed.), Estimation of Natural Groundwater Recharge (pp. 323-338). Springer. https://doi.org/10.1007/978-94-015-7780-9_20
[16]
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.
[17]
Frohlich, R. K., & Kelly, W. E. (1988). Estimates of Specific Yield with the Geoelectric Resistivity Method in Glacial Aquifers. Journal of Hydrology, 97, 33-44. https://doi.org/10.1016/0022-1694(88)90064-9
[18]
Gatwaza, O. C., Cao, X., & Beckline, M. (2016). Impact of Urbanization on the Hydrological Cycle of Migina Catchment, Rwanda. Open Access Library Journal, 3, e2830. https://doi.org/10.4236/oalib.1102830
[19]
György, K. (1981). Hydraulic Conductivity and Intrinsic Permeability of Fissured and Fractured Rocks. In Developments in Water Science (Vol. 10, pp. 396-472). Elsevier. https://doi.org/10.1016/S0167-5648(08)70047-9
[20]
Henry, C., Allen, D. M., & Kirste, D. (2022). Characterizing Recharge in Southern Mali Using a Combination of Modeling and Stable Isotopes. Frontiers in Water, 4, Article ID: 778957. https://doi.org/10.3389/frwa.2022.778957
[21]
Igboekwe, M. U., & Ruth, A. (2011). Groundwater Recharge through Infiltration Process: A Case Study of Umudike, Southeastern Nigeria. Journal of Water Resource and Protection, 3, 295-299. https://doi.org/10.4236/jwarp.2011.35037
[22]
Islam, S., Singh, R. K., & Khan, R. A. (2016). Methods of Estimating Groundwater Re-charge. International Journal of Engineering Associates, 5, 6-9. https://www.researchgate.net/publication/303435940
[23]
Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of Remote Sensing and GIS Techniques for Generation of Groundwater Prospect Zones towards Rural Development: An Approach. International Journal of Remote Sensing, 24, 993-1008. https://doi.org/10.1080/01431160210144543
[24]
Johansson, P. (1987). Estimation of Groundwater Recharge in Sandy till with Two Different Methods Using Groundwater Level Fluctuations. Journal of Hydrology, 90, 183-198. https://doi.org/10.1016/0022-1694(87)90066-7
[25]
Johnson, A. I. (1967). Specific Yield Compilation of Specific Yields for Various Materials|Semantic Scholar. Water Supply Paper, U.S. Government Printing Office.
[26]
Korkmaz, N. (1988). The Estimation of Groundwater Recharge from Water Level and Precipitation Data. Journal of Islamic Academy of Sciences, 1, 87-93.
[27]
Lerner, D., Issar, A., & Simmers, I. (with International Association of Hydrogeologists) (1990). Groundwater Recharge: A Guide to Understanding and Estimating Natural Re-charge. Heise.
[28]
Lv, M., Xu, Z., Yang, Z., Lu, H., & Lv, M. (2021). A Comprehensive Review of Specific Yield in Land Surface and Groundwater Studies. Journal of Advances in Modeling Earth Systems, 13, e2020MS002270. https://doi.org/10.1029/2020ms002270
[29]
Machiwal, D., Singh, P. K., & Yadav, K. K. (2017). Estimating Aquifer Properties and Distributed Groundwater Recharge in a Hard-Rock Catchment of Udaipur, India. Applied Water Science, 7, 3157-3172. https://doi.org/10.1007/s13201-016-0462-8
[30]
Nlend, B., Celle-Jeanton, H., Huneau, F., Ketchemen-Tandia, B., Fantong, W. Y., Boum-Nkot, S. N. et al. (2018). The Impact of Urban Development on Aquifers in Large Coastal Cities of West Africa: Present Status and Future Challenges. Land Use Policy, 75, 352-363. https://doi.org/10.1016/j.landusepol.2018.03.007
[31]
Nygren, M., Giese, M., Kløve, B., Haaf, E., Rossi, P. M., & Barthel, R. (2020). Changes in Seasonality of Groundwater Level Fluctuations in a Temperate-Cold Climate Transition Zone. Journal of Hydrology X, 8, Article ID: 100062. https://doi.org/10.1016/j.hydroa.2020.100062
[32]
Sinha, B. P. C., & Sharma, S. K. (1988). Natural Ground Water Recharge Estimation Methodologies in India. In I. Simmers (Ed.), Estimation of Natural Groundwater Recharge (pp. 301-311). Springer. https://doi.org/10.1007/978-94-015-7780-9_18
[33]
Sophocleous, M. (1985). The Role of Specific Yield in Groundwater Recharge Estimations: A Numerical Study. Groundwater, 23, 52-58. https://doi.org/10.1111/j.1745-6584.1985.tb02779.x
[34]
Toure, A., Diekkrüger, B., & Mariko, A. (2016). Impact of Climate Change on Groundwater Resources in the Klela Basin, Southern Mali. Hydrology, 3, Article No. 17. https://doi.org/10.3390/hydrology3020017
[35]
United Nations (2009). World Population Prospects. United Nations.
[36]
United Nations (2022). World Population Prospects 2022: Summary of Results. United Nations. https://doi.org/10.18356/9789210014380
[37]
Walker, D., Parkin, G., Schmitter, P., Gowing, J., Tilahun, S. A., Haile, A. T. et al. (2019). Insights from a Multi-Method Recharge Estimation Comparison Study. Groundwater, 57, 245-258. https://doi.org/10.1111/gwat.12801