全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Drought of Amazonia in 2023-2024

DOI: 10.4236/ajcc.2024.133026, PP. 567-597

Keywords: El Ni?o, SST in the Tropical Atlantic, Amazon, Drought, River Levels, Heatwave, Dry Season Length

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Amazon basin has experienced an extreme drought that started in the austral summer of 2022-23 and extends into 2024. This drought started earlier than other previous droughts. Although some rain fell during the austral summer, totals remained below average. Higher temperatures during austral winter and spring 2023, which affected most of Central South America, then aggravated drought conditions. This coincided with an intense El Ni?o and abnormally warm tropical North Atlantic Ocean temperatures since mid-2023. Decreased rainfall across the Amazon basin, negative anomalies in evapotranspiration (derived from latent heat) and soil moisture indicators, as well as increased temperatures during the dry-to-wet transition season, September-October-November (SON) 2023, combined to delay the onset of the wet season in the hydrological year 2023-24 by nearly two months and caused it to be uncharacteristically weak. SON 2023 registered a precipitation deficit of the order of 50 to 100 mm/month, and temperatures +3?C higher than usual in Amazonia, leading to reduced evapotranspiration and soil moisture indicators. These processes, in turn, determined an exceptionally late onset and a lengthening of the dry season, affecting the 2023-2024 hydrological year. These changes were aggravated by a heat wave from June to December 2023. Drought-heat compound events and their consequences are the most critical natural threats to society. River levels reached record lows, or dried up completely, affecting Amazonian ecosystems. Increased risk of wildfires is another concern exacerbated by these conditions.

References

[1]  Albergel, C., Dutra, E., Munier, S., Calvet, J., Munoz-Sabater, J., de Rosnay, P., et al. (2018). ERA-5 and ERA-Interim Driven ISBA Land Surface Model Simulations: Which One Performs Better? Hydrology and Earth System Sciences, 22, 3515-3532.
https://doi.org/10.5194/hess-22-3515-2018
[2]  Alexander, L. (2011). Extreme Heat Rooted in Dry Soils. Nature Geoscience, 4, 12-13.
https://doi.org/10.1038/ngeo1045
[3]  ANA (2023). Subsídios técnicos à proposta de Declaração de situação crítica de escassez quantitativa dos recursos hídricos no Rio Madeira. Nota Técnica Conjunta N˚ 1/2023/SRE/SFI/SHE/SGH-IS. Agencia Nacional de Aguas ANA.
[4]  Anderson, L. O., Ribeiro Neto, G., Cunha, A. P., Fonseca, M. G., Mendes de Moura, Y., Dalagnol, R., et al. (2018). Vulnerability of Amazonian Forests to Repeated Droughts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, Article ID: 20170411.
https://doi.org/10.1098/rstb.2017.0411
[5]  Andreoli, R. V., & Kayano, M. T. (2005). ENSO-Related Rainfall Anomalies in South America and Associated Circulation Features during Warm and Cold Pacific Decadal Oscillation Regimes. International Journal of Climatology, 25, 2017-2030.
https://doi.org/10.1002/joc.1222
[6]  Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., et al. (2018). 21st Century Drought-Related Fires Counteract the Decline of Amazon Deforestation Carbon Emissions. Nature Communications, 9, Article No. 536.
https://doi.org/10.1038/s41467-017-02771-y
[7]  Arantes, C. C., Winemiller, K. O., Petrere, M., Castello, L., Hess, L. L., & Freitas, C. E. C. (2017). Relationships between Forest Cover and Fish Diversity in the Amazon River Floodplain. Journal of Applied Ecology, 55, 386-395.
https://doi.org/10.1111/1365-2664.12967
[8]  Arias, P. A., Martínez, J. A., Mejía, J. D., Pazos, M. J., Espinoza, J. C., & Wongchuig-Correa, S. (2020). Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Links to Tropical Atlantic Surface Temperatures. Journal of Climate, 33, 8537-8559.
https://doi.org/10.1175/jcli-d-19-0696.1
[9]  Artaxo, P. (2023). Amazon Deforestation Implications in Local/Regional Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 120, e2317456120.
https://doi.org/10.1073/pnas.2317456120
[10]  Arvor, D., Funatsu, B., Michot, V., & Dubreuil, V. (2018). Addendum: Arvor, D., et al. Monitoring Rainfall Patterns in the Southern Amazon with PERSIANN-CDR Data: Long-Term Characteristics and Trends. Remote Sens. 2017, 9, 889. Remote Sensing, 10, Article 128.
https://doi.org/10.3390/rs10010128
[11]  Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, N. X. (2017). Temporal and Spatial Evaluation of Satellite Rainfall Estimates over Different Regions in Latin-America. Atmospheric Research, 213, 34-50.
https://doi.org/10.1016/j.atmosres.2018.05.011
[12]  Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C., et al. (2018). Recent Intensification of Amazon Flooding Extremes Driven by Strengthened Walker Circulation. Science Advances, 4, eaat8785.
https://doi.org/10.1126/sciadv.aat8785
[13]  Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., et al. (2017). Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling. Hydrology and Earth System Sciences, 21, 6201-6217.
https://doi.org/10.5194/hess-21-6201-2017
[14]  Boulton, C. A., Lenton, T. M., & Boers, N. (2022). Pronounced Loss of Amazon Rainforest Resilience since the Early 2000s. Nature Climate Change, 12, 271-278.
https://doi.org/10.1038/s41558-022-01287-8
[15]  Cai, W., McPhaden, M. J., Grimm, A. M., Rodrigues, R. R., Taschetto, A. S., Garreaud, R. D., et al. (2020). Climate Impacts of the El Niño-Southern Oscillation on South America. Nature Reviews Earth & Environment, 1, 215-231.
https://doi.org/10.1038/s43017-020-0040-3
[16]  Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Wayne Higgins, R., et al. (2008). Assessing Objective Techniques for Gauge-Based Analyses of Global Daily Precipitation. Journal of Geophysical Research: Atmospheres, 113, D04110.
https://doi.org/10.1029/2007jd009132
[17]  Clarke, B. Barnes, C., Rodrigues, R., Zachariah, M., Stewart, S., Raju, E., Baumgart, N., D., Libonati, R., Santos, D., Albuquerque, R., Alves, L.M., Otto, F. (2024) Climate Change, Not El Niño, Main Driver of Exceptional Drought in Highly Vulnerable Amazon River Basin.
https://spiral.imperial.ac.uk/bitstream/10044/1/108761/7/Scientific%20Report%20-%20Amazon%20Drought.pdf
[18]  Commar, L. F. S. A., Abrahão, G. M., & Costa, M. H. (2023). A Possible Deforestation-Induced Synoptic-Scale Circulation That Delays the Rainy Season Onset in Amazonia. Environmental Research Letters, 18, Article ID: 044041.
[19]  Costa, F., Marengo, J., Albernaz, A., et al. (2024). Policy Brief: Droughts in Amazonia, Science Panel for Amazon SPA.
https://www.theamazonwewant.org/spa_publication/pb-droughts/
[20]  Cunha, A. P. M. A., Zeri, M., Deusdará Leal, K., Costa, L., Cuartas, L. A., Marengo, J. A., et al. (2019). Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere, 10, Article 642.
https://doi.org/10.3390/atmos10110642
[21]  de Lima, L. S., Silva, F. E. O. e., Dorio Anastácio, P. R., Kolanski, M. M. d. P., Pires Pereira, A. C., Menezes, M. S. R., et al. (2024). Severe Droughts Reduce River Navigability and Isolate Communities in the Brazilian Amazon. Communications Earth & Environment, 5, Article No. 370.
https://doi.org/10.1038/s43247-024-01530-4
[22]  de Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M., Frappart, F., Calmant, S., et al. (2013). Large-Scale Hydrologic and Hydrodynamic Modeling of the Amazon River Basin. Water Resources Research, 49, 1226-1243.
https://doi.org/10.1002/wrcr.20067
[23]  Eiras‐Barca, J., Dominguez, F., Yang, Z., Chug, D., Nieto, R., Gimeno, L., et al. (2020). Changes in South American Hydroclimate under Projected Amazonian Deforestation. Annals of the New York Academy of Sciences, 1472, 104-122.
https://doi.org/10.1111/nyas.14364
[24]  Espinoza, J. C., Ronchail, J., Marengo, J. A., & Segura, H. (2019b). Contrasting North–South Changes in Amazon Wet-Day and Dry-Day Frequency and Related Atmospheric Features (1981-2017). Climate Dynamics, 52, 5413-5430.
https://doi.org/10.1007/s00382-018-4462-2
[25]  Espinoza, J. C., Sörensson, A. A., Ronchail, J., Molina-Carpio, J., Segura, H., Gutierrez-Cori, O., et al. (2019a). Regional Hydro-Climatic Changes in the Southern Amazon Basin (Upper Madeira Basin) during the 1982-2017 Period. Journal of Hydrology: Regional Studies, 26, Article ID: 100637.
https://doi.org/10.1016/j.ejrh.2019.100637
[26]  Espinoza, J., Arias, P. A., Moron, V., Junquas, C., Segura, H., Sierra-Pérez, J. P., et al. (2021). Recent Changes in the Atmospheric Circulation Patterns during the Dry-To-Wet Transition Season in South Tropical South America (1979-2020): Impacts on Precipitation and Fire Season. Journal of Climate, 34, 1-56.
https://doi.org/10.1175/jcli-d-21-0303.1
[27]  Espinoza, J., Jimenez, J. C., Marengo, J. A., Schongart, J., Ronchail, J., Lavado-Casimiro, W., et al. (2024). The New Record of Drought and Warmth in the Amazon in 2023 Related to Regional and Global Climatic Features. Scientific Reports, 14, Article No. 8107.
https://doi.org/10.1038/s41598-024-58782-5
[28]  Espinoza, J., Marengo, J. A., Schongart, J., & Jimenez, J. C. (2022). The New Historical Flood of 2021 in the Amazon River Compared to Major Floods of the 21st Century: Atmospheric Features in the Context of the Intensification of Floods. Weather and Climate Extremes, 35, Article ID: 100406.
https://doi.org/10.1016/j.wace.2021.100406
[29]  Fernandes, K., Giannini, A., Verchot, L., Baethgen, W., & Pinedo‐Vasquez, M. (2015). Decadal Covariability of Atlantic SSTs and Western Amazon Dry-Season Hydroclimate in Observations and CMIP5 Simulations. Geophysical Research Letters, 42, 6793-6801.
https://doi.org/10.1002/2015gl063911
[30]  Fleischmann, A., Papa, F., Hamilton, S., Melack, J., et al. (2024). Extreme Warming of Amazon Waters in a Changing Climate.
[31]  Flores, B. M., & Holmgren, M. (2021). White-Sand Savannas Expand at the Core of the Amazon after Forest Wildfires. Ecosystems, 24, 1624-1637.
https://doi.org/10.1007/s10021-021-00607-x
[32]  Fu, R., & Li, W. (2004). The Influence of the Land Surface on the Transition from Dry to Wet Season in Amazonia. Theoretical and Applied Climatology, 78, 97-110.
https://doi.org/10.1007/s00704-004-0046-7
[33]  Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., et al. (2013). Increased Dry-Season Length over Southern Amazonia in Recent Decades and Its Implication for Future Climate Projection. Proceedings of the National Academy of Sciences, 110, 18110-18115.
https://doi.org/10.1073/pnas.1302584110
[34]  Galaz, V., & Meacham, M. (2024). Redirecting Flows—Navigating the Future of the Amazon. arXiv: 2403.18521.
[35]  Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L. G., et al. (2021). Amazonia as a Carbon Source Linked to Deforestation and Climate Change. Nature, 595, 388-393.
https://doi.org/10.1038/s41586-021-03629-6
[36]  Good, P., Lowe, J. A., Andrews, T., Wiltshire, A., Chadwick, R., Ridley, J. K., et al. (2015). Nonlinear Regional Warming with Increasing CO2 Concentrations. Nature Climate Change, 5, 138-142.
https://doi.org/10.1038/nclimate2498
[37]  Gutierrez-Cori, O., Espinoza, J. C., Li, L. Z. X., Wongchuig, S., Arias, P. A., Ronchail, J., et al. (2021). On the Hydroclimate-Vegetation Relationship in the Southwestern Amazon during the 2000-2019 Period. Frontiers in Water, 3, Article 648499.
https://doi.org/10.3389/frwa.2021.648499
[38]  Güntner, A. (2008). Improvement of Global Hydrological Models Using GRACE Data. Surveys in Geophysics, 29, 375-397.
https://doi.org/10.1007/s10712-008-9038-y
[39]  Heerspink, B. P., Kendall, A. D., Coe, M. T., & Hyndman, D. W. (2020). Trends in Streamflow, Evapotranspiration, and Groundwater Storage across the Amazon Basin Linked to Changing Precipitation and Land Cover. Journal of Hydrology: Regional Studies, 32, Article ID: 100755.
https://doi.org/10.1016/j.ejrh.2020.100755
[40]  Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Hornyi, A., Muoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thepaut, J. N. (2023). ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
[41]  Hirahara, S., Balmaseda, M. A., de Boisseson, E., & Hersbach, H. (2016). Sea Surface Temperature and Sea Ice Concentration for ERA5. ERA Report Series No. 26.
[42]  Hulsman, P., Keune, J., Koppa, A., Schellekens, J., & Miralles, D. G. (2023). Incorporating Plant Access to Groundwater in Existing Global, Satellite-Based Evaporation Estimates. Water Resources Research, 59, e2022WR033731.
https://doi.org/10.1029/2022wr033731
[43]  INMET (2023). Balanço de setembro de 2023 em Manaus (AM).
https://portal.inmet.gov.br/noticias/balan%C3%A7o-manaus-am-teve-chuva-acima-da-m%C3%A9dia-em-setembro-2023
[44]  Jiménez, J. C., Miranda, V., Trigo, I., Libonati, R., Albuquerque, R., Peres, L. F., et al. (2024). Vegetation Warming and Greenness Decline across Amazonia during the Extreme Drought of 2023. Remote Sensing, 16, Article 2519.
https://doi.org/10.3390/rs16142519
[45]  Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E. O. C., Berenguer, E., Carmenta, R., et al. (2023). The Drivers and Impacts of Amazon Forest Degradation. Science, 379, eabp8622.
https://doi.org/10.1126/science.abp8622
[46]  Leite‐Filho, A. T., de Sousa Pontes, V. Y., & Costa, M. H. (2019). Effects of Deforestation on the Onset of the Rainy Season and the Duration of Dry Spells in Southern Amazonia. Journal of Geophysical Research: Atmospheres, 124, 5268-5281.
https://doi.org/10.1029/2018jd029537
[47]  Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M., & Börner, J. (2021). Deforestation Reduces Rainfall and Agricultural Revenues in the Brazilian Amazon. Nature Communications, 12, Article No. 2591.
https://doi.org/10.1038/s41467-021-22840-7
[48]  Liu, S., McVicar, T. R., Wu, X., Cao, X., & Liu, Y. (2024). Assessing the Relative Importance of Dry-Season Incoming Solar Radiation and Water Storage Dynamics during the 2005, 2010 and 2015 Southern Amazon Droughts: Not All Droughts Are Created Equal. Environmental Research Letters, 19, Article ID: 034027.
https://doi.org/10.1088/1748-9326/ad281e
[49]  Liu, T., Chen, D., Yang, L., Meng, J., Wang, Z., Ludescher, J., et al. (2023). Teleconnections among Tipping Elements in the Earth System. Nature Climate Change, 13, 67-74.
https://doi.org/10.1038/s41558-022-01558-4
[50]  Lorenz, R., Jaeger, E. B., & Seneviratne, S. I. (2010). Persistence of Heat Waves and Its Link to Soil Moisture Memory. Geophysical Research Letters, 37, L09703.
https://doi.org/10.1029/2010gl042764
[51]  Maciel, J. S. C., Simões Alves, L. G., Dos Santos CorrÊA, B. G., Rodrigues De Carvalho, I. M., & Oliveira, M. A. (2020). Flood Forecast in Manaus, Amazonas, Brazil. WIT Transactions on The Built Environment, 194, 63-72.
https://doi.org/10.2495/friar200061
[52]  Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., et al. (2009). Exploring the Likelihood and Mechanism of a Climate-Change-Induced Dieback of the Amazon Rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106, 20610-20615.
https://doi.org/10.1073/pnas.0804619106
[53]  Marengo, J. A., & Espinoza, J. C. (2016). Extreme Seasonal Droughts and Floods in Amazonia: Causes, Trends and Impacts. International Journal of Climatology, 36, 1033-1050.
https://doi.org/10.1002/joc.4420
[54]  Marengo, J. A., Espinoza, J., Fu, R., Jimenez Muñoz, J. C., Muniz Alves, L., Ribeiro da Rocha, H., et al. (2021). Chapter 22: Long-Term Variability, Extremes, and Changes in Temperature and Hydro Meteorology. In C. Nobre, et al. (Eds.), Amazon Assessment Report 2021. UN Sustainable Development Solutions Network (SDSN).
https://www.theamazonwewant.org/spa-reports/
https://doi.org/10.55161/zgjg8060
[55]  Marengo, J. A., Souza, C. M., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., et al. (2018). Changes in Climate and Land Use over the Amazon Region: Current and Future Variability and Trends. Frontiers in Earth Science, 6, Article 228.
https://doi.org/10.3389/feart.2018.00228
[56]  Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., & Rodriguez, D. A. (2011). The Drought of 2010 in the Context of Historical Droughts in the Amazon Region. Geophysical Research Letters, 38, L12703.
https://doi.org/10.1029/2011gl047436
[57]  Marmontel, M., Fleischmann, A., Val, A., & Forsberg, B. (2024). Safeguard Amazon’s Aquatic Fauna against Climate Change. Nature, 625, 450-450.
https://doi.org/10.1038/d41586-024-00114-8
[58]  Martinez, J. A., & Dominguez, F. (2014). Sources of Atmospheric Moisture for the La Plata River Basin. Journal of Climate, 27, 6737-6753.
https://doi.org/10.1175/jcli-d-14-00022.1
[59]  Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. (2011). Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrology and Earth System Sciences, 15, 453-469.
https://doi.org/10.5194/hess-15-453-2011
[60]  Miralles, D. G., Koppa, A., Baez-Villanueva, O. M., Tronquo, E., Bonte, O., Zhong, F., Beck, H. E., Hulsman, P., Haghdoost, S., & Dorigo, W. A. (2024). GLEAM4: Global Evaporation and Soil Moisture Datasets at 0.1˚ Resolution from 1980 to Near Present, in Review.
[61]  Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., et al. (2021). ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth System Science Data, 13, 4349-4383.
https://doi.org/10.5194/essd-13-4349-2021
[62]  Nobrega, R. L. B., Alencar, P. H. L., Baniwa, B., Buell, M., Chaffe, P. L. B., Munduruku Pinto Correa, D., et al. (2023). Co-developing Pathways to Protect Nature, Land, Territory, and Well-Being in Amazonia. Communications Earth & Environment, 4, Article No. 364.
https://doi.org/10.1038/s43247-023-01026-7
[63]  Paca, V. H. D. M., Espinoza-Dávalos, G., Moreira, D., & Comair, G. (2020). Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records. Water, 12, Article 1244.
https://doi.org/10.3390/w12051244
[64]  Papastefanou, P., Zang, C. S., Angelov, Z., de Castro, A. A., Jimenez, J. C., De Rezende, L. F. C., et al. (2022). Recent Extreme Drought Events in the Amazon Rainforest: Assessment of Different Precipitation and Evapotranspiration Datasets and Drought Indicators. Biogeosciences, 19, 3843-3861.
https://doi.org/10.5194/bg-19-3843-2022
[65]  Paredes-Trejo, F. J., Barbosa, H. A., & Lakshmi Kumar, T. V. (2017). Validating Chirps-Based Satellite Precipitation Estimates in Northeast Brazil. Journal of Arid Environments, 139, 26-40.
https://doi.org/10.1016/j.jaridenv.2016.12.009
[66]  Perkins-Kirkpatrick, S., Barriopedro, D., Jha, R., Wang, L., Mondal, A., Libonati, R., et al. (2024). Extreme Terrestrial Heat in 2023. Nature Reviews Earth & Environment, 5, 244-246.
https://doi.org/10.1038/s43017-024-00536-y
[67]  Pokhrel, Y. N., Fan, Y., Miguez‐Macho, G., Yeh, P. J., & Han, S. (2013). The Role of Groundwater in the Amazon Water Cycle: 3. Influence on Terrestrial Water Storage Computations and Comparison with Grace. Journal of Geophysical Research: Atmospheres, 118, 3233-3244.
https://doi.org/10.1002/jgrd.50335
[68]  Ratier, R. (2023). Água a 38˚C, peixe podre e jacaré morto: Cientistas mostram colapso no AM.
https://www.uol.com.br/ecoa/colunas/rodrigo-ratier/2023/10/17/agua-a-38-oc-peixe-podre-e-jacare-morto-cientistas-mostram-colapso-no-am.htm accessed 11.19.23
[69]  Ribeiro, G. G., Anderson, L. O., Barretos, N. J. C., Abreu, R., Alves, L., Dong, B., et al. (2022). Attributing the 2015/2016 Amazon Basin Drought to Anthropogenic Influence. Climate Resilience and Sustainability, 1, e25.
https://doi.org/10.1002/cli2.25
[70]  Rodell, M., & Famiglietti, J. S. (2002). The Potential for Satellite-Based Monitoring of Groundwater Storage Changes Using GRACE: The High Plains Aquifer, Central US. Journal of Hydrology, 263, 245-256.
https://doi.org/10.1016/s0022-1694(02)00060-4
[71]  Salazar, L. F., Nobre, C. A., & Oyama, M. D. (2007). Climate Change Consequences on the Biome Distribution in Tropical South America. Geophysical Research Letters, 34, L09708.
https://doi.org/10.1029/2007gl029695
[72]  Sampaio, G., Borma, L. S., Cardoso, M., Alves, L. M., von Randow, C., Rodriguez, D. A., et al. (2018). Assessing the Possible Impacts of a 4 °C or Higher Warming in Amazonia. In C. A. Nobre, J. A. Marengo, & W. R. Soares (Eds.), Climate Change Risks in Brazil (pp. 201-218). Springer International Publishing.
https://doi.org/10.1007/978-3-319-92881-4_8
[73]  Satyamurty, P., da Costa, C. P. W., & Manzi, A. O. (2013b). Moisture Source for the Amazon Basin: A Study of Contrasting Years. Theoretical and Applied Climatology, 111, 195-209.
https://doi.org/10.1007/s00704-012-0637-7
[74]  Satyamurty, P., da Costa, C. P. W., Manzi, A. O., & Candido, L. A. (2013a). A Quick Look at the 2012 Record Flood in the Amazon Basin. Geophysical Research Letters, 40, 1396-1401.
https://doi.org/10.1002/grl.50245
[75]  Schöngart, J., & Junk, W. J. (2020). Clima e hidrologia nas várzeas da Amazônia Central. In W. J. Junk, M. T. F. Piedade, F. Wittmann, & J. Schöngart (Eds.), Várzeas Amaz Desafios para um Manejo Sustentável (pp. 44-65). INPA—Instituto Nacional de Pesquisas da Amazonia.
[76]  SENAMHI (2023). Boletín Hidrológico Mensual a Nivel Nacional.
https://www.senamhi.gob.pe/load/file/02609SENA-147.pdf
[77]  SGB (2023).
https://www.sgb.gov.br/publique/Hidrologia/Eventos-Criticos/Seca-na-Regiao-Amazonica-8328.html
[78]  Shi, M., Liu, J., Worden, J. R., Bloom, A. A., Wong, S., & Fu, R. (2019). The 2005 Amazon Drought Legacy Effect Delayed the 2006 Wet Season Onset. Geophysical Research Letters, 46, 9082-9090.
https://doi.org/10.1029/2019gl083776
[79]  Sierra, J. P., Espinoza, J., Junquas, C., Wongchuig, S., Polcher, J., Moron, V., et al. (2023). Impacts of Land-Surface Heterogeneities and Amazonian Deforestation on the Wet Season Onset in Southern Amazon. Climate Dynamics, 61, 4867-4898.
https://doi.org/10.1007/s00382-023-06835-2
[80]  Sierra, J. P., Junquas, C., Espinoza, J. C., Segura, H., Condom, T., Andrade, M., et al. (2021). Deforestation Impacts on Amazon-Andes Hydroclimatic Connectivity. Climate Dynamics, 58, 2609-2636.
https://doi.org/10.1007/s00382-021-06025-y
[81]  Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013). Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 2. Future Climate Projections. Journal of Geophysical Research: Atmospheres, 118, 2473-2493.
https://doi.org/10.1002/jgrd.50188
[82]  Strassberg, G., Scanlon, B. R., & Chambers, D. (2009). Evaluation of Groundwater Storage Monitoring with the GRACE Satellite: Case Study of the High Plains Aquifer, Central United States. Water Resources Research, 45, W05410.
https://doi.org/10.1029/2008wr006892
[83]  Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). GRACE Measurements of Mass Variability in the Earth System. Science, 305, 503-505.
https://doi.org/10.1126/science.1099192
[84]  Tedeschi, R. G., Cavalcanti, I. F. A., & Grimm, A. M. (2013). Influences of Two Types of ENSO on South American Precipitation. International Journal of Climatology, 33, 1382-1400.
https://doi.org/10.1002/joc.3519
[85]  Toreti, A., Bavera, D., Acosta Navarro, J., Arias Muñoz, C., Barbosa, P., Branco, A., Cunha, A. P., de Jager, A., Fioravanti, G., Grimaldi, S., Hrast Essenfelder, A., Libertà, G., Maetens, W., Magni, D., Marengo, J. A., Masante, D., Mazzeschi, M., McCormick, N., Meroni, M., Oom, D., Rembold, F., Salamon, P., & San Miguel, J. (2023). Drought in the Amazon Basin. Publications Office of the European Union.
[86]  Towner, J., Ficchí, A., Cloke, H. L., Bazo, J., Coughlan de Perez, E., & Stephens, E. M. (2021). Influence of ENSO and Tropical Atlantic Climate Variability on Flood Characteristics in the Amazon Basin. Hydrology and Earth System Sciences, 25, 3875-3895.
https://doi.org/10.5194/hess-25-3875-2021
[87]  WMO (2024). State of the Climate in Latin America and the Caribbean 2023 WMO-No. 1351. World Meteorological Organization.
[88]  Wright, J. S., Fu, R., Worden, J. R., Chakraborty, S., Clinton, N. E., Risi, C., et al. (2017). Rainforest-Initiated Wet Season Onset over the Southern Amazon. Proceedings of the National Academy of Sciences of the United States of America, 114, 8481-8486.
https://doi.org/10.1073/pnas.1621516114
[89]  Wunderling, N., Staal, A., Sakschewski, B., Hirota, M., Tuinenburg, O. A., Donges, J. F., et al. (2022). Recurrent Droughts Increase Risk of Cascading Tipping Events by Outpacing Adaptive Capacities in the Amazon Rainforest. Proceedings of the National Academy of Sciences of the United States of America, 119, e2120777119.
https://doi.org/10.1073/pnas.2120777119
[90]  Xie, P., Arkin, P. A., & Janowiak, J. E. (2007). CMAP: The CPC Merged Analysis of Precipitation. In V. Levizzani, P. Bauer, & F. J. Turk (Eds.), Measuring Precipitation from Space (pp. 319-328). Springer.
https://doi.org/10.1007/978-1-4020-5835-6_25
[91]  Yoon, J., & Zeng, N. (2010). An Atlantic Influence on Amazon Rainfall. Climate Dynamics, 34, 249-264.
https://doi.org/10.1007/s00382-009-0551-6
[92]  Zeri, M., Cunha, A., Cunningham, C., Guedes, M., & Costa, L. (2024). A Long-Term Database of the Integrated Drought Index for Brazil from 2003 to 2023. Mendeley Data.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133