全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integration between Genomic and Computational Statistical Surveys for the Screening of SNP Genetic Variants in Inflammatory Bowel Disease (IBD) Pediatric Patients*

DOI: 10.4236/cmb.2024.143006, PP. 146-191

Keywords: Inflammatory Bowel Disease (IBD), Crohn Disease (CD), Ulcerative Colitis (UC), Clinical Exome Analysis, Computational Statistic, SNP Genetic Variants

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inflammatory bowel diseases (IBD) are complex multifactorial disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). Considering that IBD is a genetic and multifactorial disease, we screened for the distribution dynamism of IBD pathogenic genetic variants (single nucleotide polymorphisms; SNPs) and risk factors in four (4) IBD pediatric patients, by integrating both clinical exome sequencing and computational statistical approaches, aiming to categorize IBD patients in CD and UC phenotype. To this end, we first aligned genomic read sequences of these IBD patients to hg19 human genome by using bowtie 2 package. Next, we performed genetic variant calling analysis in terms of single nucleotide polymorphism (SNP) for genes covered by at least 20 read genomic sequences. Finally, we checked for biological and genomic functions of genes exhibiting statistically significant genetic variant (SNPs) by introducing Fitcon genomic parameter. Findings showed Fitcon parameter as normalizing IBD patient’s population variability, as well as inducing a relative good clustering between IBD patients in terms of CD and UC phenotypes. Genomic analysis revealed a random distribution of risk factors and as well pathogenic SNPs genetic variants in the four IBD patient’s genome, claiming to be involved in: i) Metabolic disorders, ii) Autoimmune deficiencies; iii) Crohn’s disease pathways. Integration of genomic and computational statistical analysis supported a relative genetic variability regarding IBD patient population by processing IBD pathogenic SNP genetic variants as opposite to IBD risk factor variants. Interestingly, findings clearly allowed categorizing IBD patients in CD and UC phenotypes by applying Fitcon parameter in selecting IBD pathogenic genetic variants. Considering as a whole, the study suggested the efficiency of integrating clinical exome sequencing and computational statistical tools as a right approach in discriminating IBD phenotypes as well as improving inflammatory bowel disease (IBD) molecular diagnostic process.

References

[1]  Lepage, P., Häsler, R., Spehlmann, M.E., Rehman, A., Zvirbliene, A., Begun, A., et al. (2011) Twin Study Indicates Loss of Interaction between Microbiota and Mucosa of Patients with Ulcerative Colitis. Gastroenterology, 141, 227-236.
https://doi.org/10.1053/j.gastro.2011.04.011
[2]  Matricon, J. (2010) Immunopathogenèse des maladies inflammatoires chroniques de l’intestin. Médecine/Sciences, 26, 405-410.
https://doi.org/10.1051/medsci/2010264405
[3]  Kökten, T., Hansmannel, F., Melhem, H. and Peyrin-Biroulet, L. (2016) Physiopathologie des maladies inflammatoires chroniques de l’intestin (MICI). Hegel, 2, 119-129.
https://doi.org/10.3917/heg.062.0119
[4]  Corinne, G.R. (2012) Epidémiologie des maladies inflammatoires chroniques de l’Intestin en France: Apport du registre EPIMAD. Médecine humaine et pathologie. Doctorale Thèse, Université du Droit et de la Santé-Lille II.
[5]  World Gastroenterology Organization Global Guidelines (2009) Maladies inflammatoires chroniques intestinales: Une approche globale juin 2009.
https://www.worldgastroenterology.org/UserFiles/file/guidelines/inflammatory-bowel-disease-french-2009.pdf
[6]  Noel, D.D., Marinella, P., Mauro, G., Tripodi, S.I., Pin, A., Serena, A., et al. (2021) Genetic Variants Assessing Crohn’s Disease Pattern in Pediatric Inflammatory Bowel Disease Patients by a Clinical Exome Survey. Bioinformatics and Biology Insights, 15, 1-9.
https://doi.org/10.1177/11779322211055285
[7]  Lesage, S., Zouali, H., Cézard, J., Colombel, J., Belaiche, J., Almer, S., et al. (2002) CARD15/NOD2 Mutational Analysis and Genotype-Phenotype Correlation in 612 Patients with Inflammatory Bowel Disease. The American Journal of Human Genetics, 70, 845-857.
https://doi.org/10.1086/339432
[8]  Cho, J.H. (2008) Inflammatory Bowel Disease: Genetic and Epidemiologic Considerations. World Journal of Gastroenterology, 14, 338-347.
https://doi.org/10.3748/wjg.14.338
[9]  Wagner, J., Sim, W.H., Ellis, J.A., Ong, E.K., Catto-Smith, A.G., Cameron, D.J.S., et al. (2010) Interaction of Crohn’s Disease Susceptibility Genes in an Australian Paediatric Cohort. PLOS ONE, 5, e15376.
https://doi.org/10.1371/journal.pone.0015376
[10]  Kullberg, B.J., Ferwerda, G., De Jong, D.J., Drenth, J.P.H., Joosten, L.A.B., Van der Meer, J.W.M., et al. (2008) Crohn’s Disease Patients Homozygous for the 3020insC NOD2 Mutation Have a Defective NOD2/TLR4 Cross‐Tolerance to Intestinal Stimuli. Immunology, 123, 600-605.
https://doi.org/10.1111/j.1365-2567.2007.02735.x
[11]  Strober, W. and Watanabe, T. (2011) NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn’s Disease. Mucosal Immunology, 4, 484-495.
https://doi.org/10.1038/mi.2011.29
[12]  Singh, S.B., Davis, A.S., Taylor, G.A. and Deretic, V. (2006) Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria. Science, 313, 1438-1441.
https://doi.org/10.1126/science.1129577
[13]  Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., et al. (2006) A Genome-Wide Association Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn Disease in ATG16L1. Nature Genetics, 39, 207-211.
https://doi.org/10.1038/ng1954
[14]  Cadwell, K., Liu, J.Y., Brown, S.L., Miyoshi, H., Loh, J., Lennerz, J.K., et al. (2008) A Key Role for Autophagy and the Autophagy Gene ATG16L1 in Mouse and Human Intestinal Paneth Cells. Nature, 456, 259-263.
https://doi.org/10.1038/nature07416
[15]  Cummings, F.J.R., Ahmad, T., Geremia, A., Beckly, J., Cooney, R., Hancock, L., et al. (2007) Contribution of the Novel Inflammatory Bowel Disease Gene IL23R to Disease Susceptibility and Phenotype. Inflammatory Bowel Diseases, 13, 1063-1068.
https://doi.org/10.1002/ibd.20180
[16]  Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M.S., Daly, M.J., et al. (2006) A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science, 314, 1461-1463.
https://doi.org/10.1126/science.1135245
[17]  Naser, S.A. (2012) Role of ATG16L, NOD2 and IL23R in Crohn’s Disease Pathogenesis. World Journal of Gastroenterology, 18, 412-424.
https://doi.org/10.3748/wjg.v18.i5.412
[18]  Glas, J., Wagner, J., Seiderer, J., Olszak, T., Wetzke, M., Beigel, F., et al. (2012) PTPN2 Gene Variants Are Associated with Susceptibility to Both Crohn’s Disease and Ulcerative Colitis Supporting a Common Genetic Disease Background. PLOS ONE, 7, e33682.
https://doi.org/10.1371/journal.pone.0033682
[19]  Garrison, E. et Marth, G. (2012) Détection de variantes basée sur l’haplotype à partir du séquençage à lecture courte. arXiv: 1207.3907.
[20]  Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., et al. (2012) A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff. Fly, 6, 80-92.
https://doi.org/10.4161/fly.19695
[21]  Paila, U., Chapman, B.A., Kirchner, R. and Quinlan, A.R. (2013) GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations. PLOS Computational Biology, 9, e1003153.
https://doi.org/10.1371/journal.pcbi.1003153
[22]  Maciej, T. and Ewa, T. (2014) The Need to Report Effect Size Estimates Revisited. An Overview of Some Recommended Measures of Effect Size. Trends in Sport Sciences, 1, 19-25.
[23]  Eckmann, L. and Karin, M. (2005) NOD2 and Crohn’s Disease: Loss or Gain of Function? Immunity, 22, 661-667.
https://doi.org/10.1016/j.immuni.2005.06.004
[24]  Lauro, M.L., Burch, J.M. and Grimes, C.L. (2016) The Effect of NOD2 on the Microbiota in Crohn’s Disease. Current Opinion in Biotechnology, 40, 97-102.
https://doi.org/10.1016/j.copbio.2016.02.028
[25]  Matsuzawa-Ishimoto, Y., Shono, Y., Gomez, L.E., Hubbard-Lucey, V.M., Cammer, M., Neil, J., et al. (2017) Autophagy Protein ATG16L1 Prevents Necroptosis in the Intestinal Epithelium. Journal of Experimental Medicine, 214, 3687-3705.
https://doi.org/10.1084/jem.20170558
[26]  Foerster, E.G., Mukherjee, T., Cabral-Fernandes, L., Rocha, J.D.B., Girardin, S.E. and Philpott, D.J. (2021) How Autophagy Controls the Intestinal Epithelial Barrier. Autophagy, 18, 86-103.
https://doi.org/10.1080/15548627.2021.1909406
[27]  Pigneur, B., Escher, J., Elawad, M., Lima, R., Buderus, S., Kierkus, J., et al. (2013) Phenotypic Characterization of Very Early-Onset IBD Due to Mutations in the IL10, IL10 Receptor Alpha or Beta Gene: A Survey of the GENIUS Working Group. Inflammatory Bowel Diseases, 19, 2820-2828.
https://doi.org/10.1097/01.mib.0000435439.22484.d3
[28]  Ananthakrishnan, A.N. (2015) Epidemiology and Risk Factors for IBD. Nature Reviews Gastroenterology & Hepatology, 12, 205-217.
https://doi.org/10.1038/nrgastro.2015.34
[29]  Asimit, J.L., Day-Williams, A.G., Morris, A.P. and Zeggini, E. (2012) ARIEL and AMELIA: Testing for an Accumulation of Rare Variants Using Next-Generation Sequencing Data. Human Heredity, 73, 84-94.
https://doi.org/10.1159/000336982
[30]  Lange, K., Papp, J.C., Sinsheimer, J.S. and Sobel, E.M. (2014) Next-Generation Statistical Genetics: Modeling, Penalization, and Optimization in High-Dimensional Data. Annual Review of Statistics and Its Application, 1, 279-300.
https://doi.org/10.1146/annurev-statistics-022513-115638
[31]  Noel, D.D., Nafan, D., Inza, J.F., Jean-Luc, A.M., Hermann-Desire, L., Didier, M.Y.S., et al. (2017) DEXseq and Cuffdiff Approaches Weighing Differential Spliced Genes Exons Modulation in Estrogen Receptor β (Erβ) Breast Cancer Cells. African Journal of Biotechnology, 16, 1404-1427.
https://doi.org/10.5897/ajb2016.15860
[32]  Minoche, A.E., Dohm, J.C. and Himmelbauer, H. (2011) Evaluation of Genomic High-Throughput Sequencing Data Generated on Illumina HiSeq and Genome Analyzer Systems. Genome Biology, 12, R112.
https://doi.org/10.1186/gb-2011-12-11-r112
[33]  Farhan, S.M.K., Dilliott, A.A., Ghani, M., Sato, C., Liang, E., Zhang, M., et al. (2016) The ONDRISeq Panel: Custom-Designed Next-Generation Sequencing of Genes Related to Neurodegeneration. npj Genomic Medicine, 1, Article No. 16032.
https://doi.org/10.1038/npjgenmed.2016.32
[34]  Dago, D.N., Scafoglio, C., Rinaldi, A., Memoli, D., Giurato, G., Nassa, G., et al. (2015) Estrogen Receptor Beta Impacts Hormone-Induced Alternative mRNA Splicing in Breast Cancer Cells. BMC Genomics, 16, Article No. 367.
https://doi.org/10.1186/s12864-015-1541-1
[35]  Noel, D.D., Sonia, K.N.B., Martial, Y.S.D., et al. (2021) Assessment of Genetic Vari-ability in an Inflammatory Bowel Disease Patients Population by a Clinical Exome Survey. Proteomics Bioinformatics, 3, 1 p.
[36]  Noel, D.D. (2021) Normality Assessment of Several Quantitative Data Transformation Procedures. Biostatistics and Biometrics Open Access Journal, 10, Article 555786.
https://doi.org/10.19080/bboaj.2021.10.555786
[37]  Koufariotis, L.T., Chen, Y.P., Stothard, P. and Hayes, B.J. (2018) Variance Explained by Whole Genome Sequence Variants in Coding and Regulatory Genome Annotations for Six Dairy Traits. BMC Genomics, 19, Article No. 237.
https://doi.org/10.1186/s12864-018-4617-x
[38]  Kryukov, G.V., Pennacchio, L.A. and Sunyaev, S.R. (2007) Most Rare Missense Alleles Are Deleterious in Humans: Implications for Complex Disease and Association Studies. The American Journal of Human Genetics, 80, 727-739.
https://doi.org/10.1086/513473
[39]  Levenstien, M.A. and Klein, R.J. (2011) Predicting Functionally Important SNP Classes Based on Negative Selection. BMC Bioinformatics, 12, Article No. 26.
https://doi.org/10.1186/1471-2105-12-26
[40]  Li, Y.I., van de Geijn, B., Raj, A., Knowles, D.A., Petti, A.A., Golan, D., et al. (2016) RNA Splicing Is a Primary Link between Genetic Variation and Disease. Science, 352, 600-604.
https://doi.org/10.1126/science.aad9417
[41]  Li, M. and Pritchard, P.H. (2000) Characterization of the Effects of Mutations in the Putative Branchpoint Sequence of Intron 4 on the Splicing within the Human Lecithin: Cholesterol Acyltransferase Gene. Journal of Biological Chemistry, 275, 18079-18084.
https://doi.org/10.1074/jbc.m910197199
[42]  Artiga, M., Sáez, A., Romero, C., Sánchez-Beato, M., Mateo, M., Navas, C., et al. (2002) A Short Mutational Hot Spot in the First Intron of BCL-6 Is Associated with Increased BCL-6 Expression and with Longer Overall Survival in Large B-Cell Lymphomas. The American Journal of Pathology, 160, 1371-1380.
https://doi.org/10.1016/s0002-9440(10)62564-3
[43]  Lomelin, D., Jorgenson, E. and Risch, N. (2009) Human Genetic Variation Recognizes Functional Elements in Noncoding Sequence. Genome Research, 20, 311-319.
https://doi.org/10.1101/gr.094151.109
[44]  Glas, J., Seiderer, J., Bues, S., Stallhofer, J., Fries, C., Olszak, T., et al. (2013) IRGM Variants and Susceptibility to Inflammatory Bowel Disease in the German Population. PLOS ONE, 8, e54338.
https://doi.org/10.1371/journal.pone.0054338
[45]  Ogura, Y., Bonen, D.K., Inohara, N., Nicolae, D.L., Chen, F.F., Ramos, R., et al. (2001) A Frameshift Mutation in NOD2 Associated with Susceptibility to Crohn’s Disease. Nature, 411, 603-606.
https://doi.org/10.1038/35079114
[46]  Inohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., et al. (2003) Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2. Journal of Biological Chemistry, 278, 5509-5512.
https://doi.org/10.1074/jbc.c200673200
[47]  Hoefkens, E., Nys, K., John, J.M., Van Steen, K., Arijs, I., Van der Goten, J., et al. (2013) Genetic Association and Functional Role of Crohn Disease Risk Alleles Involved in Microbial Sensing, Autophagy, and Endoplasmic Reticulum (ER) Stress. Autophagy, 9, 2046-2055.
https://doi.org/10.4161/auto.26337
[48]  Ajayi, T.A., Innes, C.L., Grimm, S.A., Rai, P., Finethy, R., Coers, J., et al. (2019) Crohn’s Disease IRGM Risk Alleles Are Associated with Altered Gene Expression in Human Tissues. American Journal of Physiology-Gastrointestinal and Liver Physiology, 316, G95-G105.
https://doi.org/10.1152/ajpgi.00196.2018
[49]  Read, S., Malmström, V. and Powrie, F. (2000) Cytotoxic T Lymphocyte-Associated Antigen 4 Plays an Essential Role in the Function of CD25+CD4+ Regulatory Cells That Control Intestinal Inflammation. The Journal of Experimental Medicine, 192, 295-302.
https://doi.org/10.1084/jem.192.2.295
[50]  Xia, B., Crusius, J.B.A., Zwiers, A., Bodegraven, A.A.V., Peña, A.S. and Wu, J. (2002) CTLA4 Gene Polymorphisms in Dutch and Chinese Patients with Inflammatory Bowel Disease. Scandinavian Journal of Gastroenterology, 37, 1296-1300.
https://doi.org/10.1080/003655202761020579
[51]  Sztembis, J., Filip, R., Pękala, A., Kiela, P.R., Witas, B., Jarmakiewicz, S., et al. (2018) P834 Metabolic Syndrome Occurrence in Patients with Inflammatory Bowel Disease in Poland—Preliminary Results from the POLIBD Study. Journal of Crohns and Colitis, 12, S538-S538.
https://doi.org/10.1093/ecco-jcc/jjx180.961
[52]  Sasaki, M. and Klapproth, J.A. (2012) The Role of Bacteria in the Pathogenesis of Ulcerative Colitis. Journal of Signal Transduction, 2012, 1-6.
https://doi.org/10.1155/2012/704953
[53]  Kuballa, P., Huett, A., Rioux, J.D., Daly, M.J. and Xavier, R.J. (2008) Impaired Autophagy of an Intracellular Pathogen Induced by a Crohn’s Disease Associated ATG16L1 Variant. PLOS ONE, 3, e3391.
https://doi.org/10.1371/journal.pone.0003391

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133