Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural networks for rainfall-runoff modeling in the Zou River basin at Atchérigbé outlet. To this end, we used daily precipitation data over the period 1988-2010 as input of the models, such as the Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) to simulate river discharge in the study area. The investigated models give good results in calibration (R2 = 0.888, NSE = 0.886, and RMSE = 0.42 for LSTM; R2 = 0.9, NSE = 0.9 and RMSE = 0.397 for GRU) and in validation (R2 = 0.865, NSE = 0.851, and RMSE = 0.329 for LSTM; R2 = 0.9, NSE = 0.865 and RMSE = 0.301 for GRU). This good performance of LSTM and GRU models confirms the importance of models based on machine learning in modeling hydrological phenomena for better decision-making.
References
[1]
Abbot, J., & Marohasy, J. (2014). Input Selection and Optimisation for Monthly Rainfall Forecasting in Queensland, Australia, Using Artificial Neural Networks. Atmospheric Research, 138, 166-178. https://doi.org/10.1016/j.atmosres.2013.11.002
[2]
Agon, O. (2016). Variabilitépluviométrique et impacts sur les ressourcesen eau de surface dans le bassin du zou à Atchérigbé (62 p.). Thesis, National Water Institute, University of Abomey-Calavi.
[3]
Beck, M. B. (1991). Forecasting Environmental Change. Journal of Forecasting, 10, 3-19. https://doi.org/10.1002/for.3980100103
[4]
Bossa, A., Diekkrüger, B., & Agbossou, E. (2014). Scenario-Based Impacts of Land Use and Climate Change on Land and Water Degradation from the Meso to Regional Scale. Water, 6, 3152-3181. https://doi.org/10.3390/w6103152
[5]
Carcano, E. C., Bartolini, P., & Muselli, M. (2006). Recurrent Neural Networks in Rainfall–runoff Modeling at Daily Scale. In S. Baglio, & A. Bulsara (eds.), Understanding Complex Systems (pp. 191-200). Springer. https://doi.org/10.1007/3-540-33878-0_16
[6]
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. et al. (2014). Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1724-1734). Association for Computational Linguistics. https://doi.org/10.3115/v1/d14-1179
[7]
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recur-rent Neural Networks on Sequence Modeling.
[8]
Fang, L., & Shao, D. (2022). Application of Long Short-Term Memory (LSTM) on the Prediction of Rainfall-Runoff in Karst Area. Frontiers in Physics, 9, Article ID: 790687. https://doi.org/10.3389/fphy.2021.790687
[9]
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
[10]
Hounkpè, J., & Diekkrüger, B. (2018). Challenges in Calibrating Hydrological Models to Simultaneously Evaluate Water Resources and Flood Hazard: A Case Study of Zou Basin, Benin. Episodes, 41, 105-114. https://doi.org/10.18814/epiiugs/2018/018010
[11]
Houssou, S. C. (1998). Les bioclimats humains de l’Atacora (Nord-Ouest du Bénin) et leurs implications socio-économiques. Portail D’information Géographique, 331 p.
[12]
Jeong, J., & Park, E. (2019). Comparative Applications of Data-Driven Models Representing Water Table Fluctuations. Journal of Hydrology, 572, 261-273. https://doi.org/10.1016/j.jhydrol.2019.02.051
[13]
Kao, I., Zhou, Y., Chang, L., & Chang, F. (2020). Exploring a Long Short-Term Memory Based Encoder-Decoder Framework for Multi-Step-Ahead Flood Forecasting. Journal of Hydrology, 583, Article ID: 124631. https://doi.org/10.1016/j.jhydrol.2020.124631
[14]
Kingma, D., & Ba, J. (2014). A Method for Stochastic Optimization. In 3rd International Conference for Learning Representations. arXiv:1412.6980v9
[15]
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-Runoff Modelling Using Long Short-Term Memory (LSTM) Networks. Hydrology and Earth System Sciences, 22, 6005-6022. https://doi.org/10.5194/hess-22-6005-2018
[16]
Le, X. H. (2020). Application of Deep Neural Network for Spatiotemporal Hydrological Data Analysis. Ph.D. Dissertation, Dept. Disaster Prevention Environ. Eng., Kyungpook Nat. Univ.
[17]
Le, X., Nguyen, D., Jung, S., Yeon, M., & Lee, G. (2021). Comparison of Deep Learning Techniques for River Streamflow Forecasting. IEEE Access, 9, 71805-71820. https://doi.org/10.1109/access.2021.3077703
[18]
Li, W., Kiaghadi, A., & Dawson, C. (2020). High Temporal Resolution Rainfall-Runoff Modeling Using Long-Short-Term-Memory (LSTM) Networks. Neural Computing and Applications, 33, 1261-1278.
[19]
Moriasi, D. N., Zeckoski, R. W., Arnold, J. G., Baffaut, C. B., Malone, R. W., Daggupati, P., Guzman, J. A., Saraswat, D., Yuan, Y., Wilson, B. W., AShirmohammadi, A., Doug-las-Mankin, K. R. (2015). Hydrologic and Water Quality Models: Key Calibration and Validation Topics. Transactions of the ASABE, 58, 1609-1618.
[20]
Riad, S., Mania, J., Bouchaou, L., & Najjar, Y. (2004). Rainfall-Runoff Model Using an Artificial Neural Network Approach. Mathematical and Computer Modelling, 40, 839-846. https://doi.org/10.1016/j.mcm.2004.10.012
[21]
Sintondji, L. O., Bossa, A., & Agbossou, E. (2018). Modelling the Hydrological Balance in the Zou Catchment at Atcherigbe Outlet (Bénin Republic): Contribution to the Sustainable Use of Water Resources. In E. Tielkes (Ed.), Competition for Resources in a Changing World: New Drive for Rural Development (678 p.). Cuvillier Verlag.
[22]
Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P. et al. (1995). Nonlinear Black-Box Modeling in System Identification: A Unified Overview. Automatica, 31, 1691-1724. https://doi.org/10.1016/0005-1098(95)00120-8
[23]
Sun, D., Wu, J., Huang, H., Wang, R., Liang, F., & Xinhua, H. (2021). Prediction of Short-Time Rainfall Based on Deep Learning. Mathematical Problems in Engineering, 2021, Article ID: 6664413. https://doi.org/10.1155/2021/6664413
[24]
Vannieuwenhuyze, A. (2019). Machine Learning and Deep Learning by Doing, Ediciones Eni.
[25]
Xiang, Z., Yan, J., & Demir, I. (2020). A Rainfall-Runoff Model with LSTM-Based Sequence-to-Sequence Learning. Water Resources Research, 56, e2019WR025326. https://doi.org/10.1029/2019wr025326
[26]
Yokoo, K., Ishida, K., Ercan, A., Tu, T., Nagasato, T., Kiyama, M. et al. (2021). Capabilities of Deep Learning Models on Learning Physical Relationships: Case of Rainfall-Runoff Modeling with LSTM. Science of the Total Environment, 802, Article ID: 149876. https://doi.org/10.1016/j.scitotenv.2021.149876
[27]
Zohou, J. P., Biao, I. E., Aoga, J., Oscar, Houessou, O., Alamou, A. E., & Ezin, C. E. (2023). Modeling River Discharge Using Deep Learning in the Oueme Catchment at Save Outlet (Benin, West Africa). International Journal of Geoinformatics and Geological Science, 10, 29-35. https://doi.org/10.14445/23939206/ijggs-v10i1p103