全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Impact of Changing Climate on Agroforestry Tree Distribution across Agroecological Zones of Nigeria: MaxEnt Modelling Perspective

DOI: 10.4236/ojf.2024.144026, PP. 462-475

Keywords: Restoration, Species Distribution, Drought, Maximum Entropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The survival of agroforestry tree species in sub-Saharan Africa is essential for sustainable livelihoods, particularly in the semi-arid environment. Drought in the Agroecological zones (AEZ) of Nigeria is one of the environmental factors limiting parkland tree regeneration. Species distribution modelling offers the opportunity to predict future distributions of plant species based on current distribution data and bioclimatic variables. Maxent (maximum entropy) model was employed to predict the future tree distribution in AEZ parklands, under the four Representative Concentration Pathway (RCP) climate change prediction using current tree distribution (presence-only data) along a transect across three agroecological zones. The spatial data used were 19 bioclimatic variables and presence-only data for the two most important tree species—Parkia biglobosa and Vitellaria paradoxa. The result showed a drastic reduction (>45%) in the suitability of farmlands across predictions observed in the studied agroecological zones. The 2050 scenario in both species predicted areas had an increasing mid-range potential, over 44% lower suitability in sampled AEZ distribution predictions. The future prediction potential distribution maps for year 2070 of both species displayed large variations in suitability compared to 2050, showing a significant increase (up to 53%) in areas climatically suitable for both species to regenerate and thrive. This is attributed to over increased annual evapotranspiration, despite increasing seasonal precipitation. This study highlights the need for more climate-smart regeneration and improved restoration strategies to reduce land degradation as climate conditions change over time.

References

[1]  Abdullahi, I. N., & Anyaegbu, P. (2017). The Performance of Soybean Using Moringa as Alley to Improve Soil Productivity in North-Central Nigeria. African Journal of Agricultural Research, 12, 1182-1189.
https://doi.org/10.5897/AJAR2017.12128
[2]  Adesina, A. A., & Chianu, J. (2002). Determinants of Farmers’ Adoption and Adaptation of Alley Farming Technology in Nigeria. Agroforestry Systems, 55, 99-112.
https://doi.org/10.1023/a:1020556132073
[3]  Arowolo, A. O., & Deng, X. (2017). Land Use/Land Cover Change and Statistical Modelling of Cultivated Land Change Drivers in Nigeria. Regional Environmental Change, 18, 247-259.
https://doi.org/10.1007/s10113-017-1186-5
[4]  Austin, M. P. (2002). Spatial Prediction of Species Distribution: An Interface between Ecological Theory and Statistical Modelling. Ecological Modelling, 157, 101-118.
https://doi.org/10.1016/s0304-3800(02)00205-3
[5]  Bayala, J., Sanou, J., Teklehaimanot, Z., Ouedraogo, S. J., Kalinganire, A., Coe, R. et al. (2015). Advances in Knowledge of Processes in Soil-Tree-Crop Interactions in Parkland Systems in the West African Sahel: A Review. Agriculture, Ecosystems & Environment, 205, 25-35.
https://doi.org/10.1016/j.agee.2015.02.018
[6]  Bocksberger, G., Schnitzler, J., Chatelain, C., Daget, P., Janssen, T., Schmidt, M. et al. (2016). Climate and the Distribution of Grasses in West Africa. Journal of Vegetation Science, 27, 306-317.
https://doi.org/10.1111/jvs.12360
[7]  Bunn, C., Läderach, P., Pérez Jimenez, J. G., Montagnon, C., & Schilling, T. (2015). Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change. PLOS ONE, 10, e0140490.
https://doi.org/10.1371/journal.pone.0140490
[8]  Case, M. J., & Lawler, J. J. (2017). Integrating Mechanistic and Empirical Model Projections to Assess Climate Impacts on Tree Species Distributions in Northwestern North America. Global Change Biology, 23, 2005-2015.
https://doi.org/10.1111/gcb.13570
[9]  Chahouki, M. A. Z., & Sahragard, H. P. (2016). Maxent Modelling for Distribution of Plant Species Habitats of Rangelands (Iran). Polish Journal of Ecology, 64, 453-467.
https://doi.org/10.3161/15052249pje2016.64.4.002
[10]  De’ath, G., & Fabricius, K. E. (2000). Classification and Regression Trees: A Powerful Yet Simple Technique for Ecological Data Analysis. Ecology, 81, 3178-3192.
https://doi.org/10.1890/0012-9658(2000)081[3178:cartap]2.0.co;2
[11]  Deblauwe, V., Droissart, V., Bose, R., Sonké, B., Blach-Overgaard, A., Svenning, J. et al. (2016). Remotely Sensed Temperature and Precipitation Data Improve Species Distribution Modelling in the Tropics. Global Ecology and Biogeography, 25, 443-454.
https://doi.org/10.1111/geb.12426
[12]  Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J., & Guisan, A. (2011). Predicting Spatial Patterns of Plant Species Richness: A Comparison of Direct Macroecological and Species Stacking Modelling Approaches. Diversity and Distributions, 17, 1122-1131.
https://doi.org/10.1111/j.1472-4642.2011.00792.x
[13]  Ehirim, N. C., & Osuji, E. E. (2017). Impact of Sustainable Soil Management Techniques on Poverty Levels of Arable Crop Farmers in Imo State, Nigeria. Scientific Papers-Series Management Economic Engineering in Agriculture and Rural Development, 17, 121-126.
[14]  FSIN—World Food Programme (2018). Global Report on Food Crises 2018.
[15]  Gaal, M., Moriondo, M., & Bindi, M. (2012). Modelling the Impact of Climate Change on the Hungarian Wine Regions Using Random Forest. Applied Ecology and Environmental Research, 10, 121-140.
https://doi.org/10.15666/aeer/1002_121140
[16]  Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for Land Cover Classification. Pattern Recognition Letters, 27, 294-300.
https://doi.org/10.1016/j.patrec.2005.08.011
[17]  Guillera-Arroita, G., Lahoz-Monfort, J. J., & Elith, J. (2014). Maxent Is Not a Presence-absence Method: A Comment on Thibaud et al. Methods in Ecology and Evolution, 5, 1192-1197.
https://doi.org/10.1111/2041-210x.12252
[18]  Guisan, A., & Zimmermann, N. E. (2000). Predictive Habitat Distribution Models in Ecology. Ecological Modelling, 135, 147-186.
https://doi.org/10.1016/s0304-3800(00)00354-9
[19]  Hand, D. J., & Till, R. J. (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine Learning, 45, 171-186.
https://doi.org/10.1023/a:1010920819831
[20]  Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978.
https://doi.org/10.1002/joc.1276
[21]  IITA (2000). Improving Plantain and Banana Based (p. 67). International Institute of Tropical Agriculture, Project 2, Annual Report.
[22]  Kala, N., Kurukulasuriya, P., & Mendelsohn, R. (2017). The Impact of Climate Change on Agro-Ecological Zones: Evidence from Africa. Environment and Development Economics, 17, 663-687.
https://doi.org/10.1017/s1355770x12000241
[23]  Kotschi, J. (2006). Coping with Climate Change and the Role of Agrobiodiversity. In Conference on International Agricultural Research for Development (pp. 2-8).
[24]  Li, G., Xu, G., Guo, K., & Du, S. (2014). Mapping the Global Potential Geographical Distribution of Black Locust (Robinia pseudoacacia L.) Using Herbarium Data and a Maximum Entropy Model. Forests, 5, 2773-2792.
https://doi.org/10.3390/f5112773
[25]  Lyam, P. T., Adeyemi, T. O., & Ogundipe, T. O. (2012). Distribution Modelling of Chrysophyllum albidum in South-West Nigeria. Journal of Natural and Environmental Science, 3, 7-14.
https://www.academyjournals.net
[26]  Meng, Q., Liu, Z., & Borders, B. E. (2013). Assessment of Regression Kriging for Spatial Interpolation-Comparisons of Seven GIS Interpolation Methods. Cartography and Geographic Information Science, 40, 28-39.
https://doi.org/10.1080/15230406.2013.762138
[27]  Monserud, R. A., & Leemans, R. (1992). Comparing Global Vegetation Maps with the Kappa Statistic. Ecological Modelling, 62, 275-293.
https://doi.org/10.1016/0304-3800(92)90003-w
[28]  Moore, P., Hawkins, S., & Thompson, R. (2007). Role of Biological Habitat Amelioration in Altering the Relative Responses of Congeneric Species to Climate Change. Marine Ecology Progress Series, 334, 11-19.
https://doi.org/10.3354/meps334011
[29]  Okpoho, N. A. (2018). Smallholder Agriculture Land Use Impact on Soil Organic Carbon Stock in Federal Capital Territory of Nigeria. Journal of Agriculture and Environment for International Development, 112, 109-119.
https://doi.org/
https://doi.org/10.12895/jaeid.20181.702
[30]  Onojeghuo, A. O., Blackburn, A. G., Okeke, F., & Onojeghuo, A. R. (2015). Habitat Suitability Modeling of Endangered Primates in Nigeria: Integrating Satellite Remote Sensing and Spatial Modeling Techniques. Journal of Geoscience and Environment Protection, 3, 23-38.
https://doi.org/10.4236/gep.2015.38003
[31]  Ouedraogo, P., Traoré, S., Barry, S., Dayamba, S. D., & Bayala, J. (2017). Uses and Vulnerability of Ligneous Species Exploited by Local Population of Northern Burkina Faso in Their Adaptation Strategies to Changing Environments. Agriculture and Food Security, 6, 1-16.
[32]  Oyerinde, G., Wisser, D., Hountondji, F., Odofin, A., Lawin, A., Afouda, A. et al. (2016). Quantifying Uncertainties in Modeling Climate Change Impacts on Hydropower Production. Climate, 4, Article No. 34.
https://doi.org/10.3390/cli4030034
[33]  Phillips, S. J., & Dudík, M. (2008). Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography, 31, 161-175.
https://doi.org/10.1111/j.0906-7590.2008.5203.x
[34]  Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
[35]  Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the Black Box: An Open-Source Release of Maxent. Ecography, 40, 887-893.
https://doi.org/10.1111/ecog.03049
[36]  Phillips, S. J., Avenue, P., & Park, F. (1997). A Maximum Entropy Approach to Species Distribution Modeling. In Proceedings of the Twenty-First International Conference on Machine Learning (pp. 655-662).
[37]  Piri Sahragard, H., & Ajorlo, M. (2016). Predicting the Distribution of Plant Species Habitats Using Maximum Entropy Model (a Case Study in Rangelands of Western Taftan, Southeastern Iran). Soil and Environment, 35, 224-234.
[38]  Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R. et al. (2014). Hydrological Droughts in the 21st Century, Hotspots and Uncertainties from a Global Multimodel Ensemble Experiment. Proceedings of the National Academy of Sciences, 111, 3262-3267.
https://doi.org/10.1073/pnas.1222473110
[39]  Seo, S. N. (2012). Decision Making under Climate Risks: An Analysis of Sub-Saharan Farmers’ Adaptation Behaviors. Weather, Climate, and Society, 4, 285-299.
https://doi.org/10.1175/wcas-d-12-00024.1
[40]  Seo, S. N. (2014). Evaluation of the Agro-Ecological Zone Methods for the Study of Climate Change with Micro Farming Decisions in Sub-Saharan Africa. European Journal of Agronomy, 52, 157-165.
https://doi.org/10.1016/j.eja.2013.09.014
[41]  Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate Change Threats to Plant Diversity in Europe. Proceedings of the National Academy of Sciences, 102, 8245-8250.
https://doi.org/10.1073/pnas.0409902102
[42]  Verheyen, K., Vanhellemont, M., Auge, H., Baeten, L., Baraloto, C., Barsoum, N. et al. (2016). Contributions of a Global Network of Tree Diversity Experiments to Sustainable Forest Plantations. Ambio, 45, 29-41.
https://doi.org/10.1007/s13280-015-0685-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133