全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种苯基吡啶基丙烯腈类水相人工光捕获体系的构筑
The Fabrication of Phenylpyridinylacrylonitrile-Based Aqueous Artificial Light-Harvesting System

DOI: 10.12677/jocr.2024.123045, PP. 474-481

Keywords: 超分子自组装,主–客体作用,人工光捕获,能量转移
Supermolecular Self-Assembly
, Host-Guest Interaction, Artificial Light-Harvesting, Energy Transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文设计合成了一种具有聚集诱导效应的苯基吡啶基丙烯腈衍生物(PPAD)作为客体分子,通过与羧酸盐修饰的水溶性柱[5]芳烃(P[5]A)进行主–客体作用,在水中形成了超分子两亲体,并自组装成P[5]A-PPAD超分子纳米颗粒。由于P[5]A-PPAD具有明显的荧光发射能力,可将其作为能量供体,并对能量受体荧光染料4,7-二(2-噻吩基)-2,1,3-苯并噻二唑(DBT)进行包载,成功构筑了一种新型P[5]A-PPAD-DBT超分子人工光捕获体系。通过性能测试发现,P[5]A-PPAD-DBT体系的能量转移效率为52.7%,天线效应为11.6,具有良好的水相人工光捕获能力,为水相人工光捕获体系的构筑与发展提供了新的思路。
In this work, a phenylpyridinylacrylonitrile-based derivative (PPAD) with aggregation inducing effect was initially designed and synthesized, which was used as a guest molecule. Through host-guest interaction with a water-soluble pillar[5]arene (P[5]A) modified with carboxylate salts, P[5]A-PPAD supramolecular amphiphilics were formed in water and self-assembled into P[5]A-PPAD supramolecular nanoparticles. Due to the significant fluorescence emission ability of P[5]A-PPAD, P[5]A-PPAD could be used as an energy donor and encapsulate the energy acceptor fluorescent dye 4,7-di(2-thienyl)-2,1,3-benzothiadiazole (DBT) to construct P[5]A-PPAD-DBT supramolecular artificial light harvesting system. After further investigation of light-harvesting performance, the energy transfer efficiency of P[5]A-PPAD-DBT system was 52.7%, and the antenna effect was 11.6, which indicated a good aqueous light-harvesting ability, providing new ideas for the construction and development of supramolecular artificial light harvesting systems.

References

[1]  Wang, X., Song, N., Hou, W., Wang, C., Wang, Y., Tang, J., et al. (2019) Efficient Aggregation‐Induced Emission Manipulated by Polymer Host Materials. Advanced Materials, 31, Article ID: 1903962.
https://doi.org/10.1002/adma.201903962
[2]  Li, W., Wang, X., Zhang, D., Hu, Y., Xu, W., Xu, L., et al. (2021) Artificial Light‐Harvesting Systems Based on Aiegen‐branched Rotaxane Dendrimers for Efficient Photocatalysis. Angewandte Chemie, 133, 18909-18916.
https://doi.org/10.1002/ange.202106035
[3]  Wang, Y., Lai, Y., Ren, T., Tang, J., Gao, Y., Geng, Y., et al. (2023) Construction of Artificial Light-Harvesting Systems Based on Aggregation-Induced Emission Type Supramolecular Self-Assembly Metallogels. Langmuir, 39, 1103-1110.
https://doi.org/10.1021/acs.langmuir.2c02841
[4]  Lou, X., Song, N. and Yang, Y. (2019) Enhanced Solution and Solid‐State Emission and Tunable White‐light Emission Harvested by Supramolecular Approaches. ChemistryA European Journal, 25, 11975-11982.
https://doi.org/10.1002/chem.201902700
[5]  Xu, L., Wang, Z., Wang, R., Wang, L., He, X., Jiang, H., et al. (2019) A Conjugated Polymeric Supramolecular Network with Aggregation‐Induced Emission Enhancement: An Efficient Light‐harvesting System with an Ultrahigh Antenna Effect. Angewandte Chemie, 132, 9994-9999.
https://doi.org/10.1002/ange.201907678
[6]  Geng, W., Liu, Y., Wang, Y., Xu, Z., Zheng, Z., Yang, C., et al. (2017) A Self-Assembled White-Light-Emitting System in Aqueous Medium Based on a Macrocyclic Amphiphile. Chemical Communications, 53, 392-395.
https://doi.org/10.1039/c6cc09079f
[7]  Sun, G., Cai, L., Zhang, Y., Hu, Y., Zhu, J., Sun, T., et al. (2022) Salicylideneaniline-based Aqueous Supramolecular Artificial Light-Harvesting Platforms with Biocompatibility. Dyes and Pigments, 205, Article ID: 110577.
https://doi.org/10.1016/j.dyepig.2022.110577
[8]  Qiao, F., Yuan, Z., Lian, Z., Yan, C., Zhuo, S., Zhou, Z., et al. (2017) Supramolecular Hyperbranched Polymers with Aggregation-Induced Emission Based on Host-Enhanced Π-π Interaction for Use as Aqueous Light-Harvesting Systems. Dyes and Pigments, 146, 392-397.
https://doi.org/10.1016/j.dyepig.2017.07.040
[9]  Zhang, W., Luo, Y., Ni, X., Tao, Z. and Xiao, X. (2022) Two-step, Sequential, Efficient, Artificial Light-Harvesting Systems Based on Twisted Cucurbit[14]Uril for Manufacturing White Light Emission Materials. Chemical Engineering Journal, 446, Article ID: 136954.
https://doi.org/10.1016/j.cej.2022.136954
[10]  Liu, Q., Zuo, M., Wang, K. and Hu, X. (2023) A Cavitand-Based Supramolecular Artificial Light-Harvesting System with Sequential Energy Transfer for Photocatalysis. Chemical Communications, 59, 13707-13710.
https://doi.org/10.1039/d3cc04040b
[11]  Sun, G., Cai, L., Cui, H., Hu, Y., Wang, J., Wang, M., et al. (2022) Naphthalenyl-Phenylacrylonitrile-Based Supramolecular Aqueous Artificial Light-Harvesting System for Photochemical Catalysis. Dyes and Pigments, 201, Article ID: 110257.
https://doi.org/10.1016/j.dyepig.2022.110257
[12]  Sun, G., Li, M., Cai, L., Wang, D., Cui, Y., Hu, Y., et al. (2023) Water-soluble Phosphate-Pillar[5]Arene (WPP5)-Based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation. Journal of Colloid and Interface Science, 641, 803-811.
https://doi.org/10.1016/j.jcis.2023.03.109
[13]  Tang, L., Wu, Z., Zhang, Q., Hu, Q., Dang, X., Cui, F., et al. (2024) A Sequential Light-Harvesting System with Thermosensitive Colorimetric Emission in Both Aqueous Solution and Hydrogel. Chemical Communications, 60, 4719-4722.
https://doi.org/10.1039/d4cc00616j
[14]  Sun, G., Li, M., Cai, L., Zhu, J., Tang, Y. and Yao, Y. (2024) Carbazole-based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation Reaction. Chemical Communications, 60, 1412-1415.
https://doi.org/10.1039/d3cc05405e

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133