本文基于惠更斯–菲涅耳积分公式,推导出了广义厄尔米特–双曲余弦–高斯光束在手性介质中传输的解析表达式,并以此为基础,对该光束在手性介质中的传播规律进行了详细的数值计算。研究结果表明,手性介质参数和光束的源参数对广义厄尔米特–双曲余弦–高斯光束在手性介质中的传输特性产生影响。我们的研究有助于加深对这种光束与手性介质之间的相互作用的理解。 In this paper, based onHuygens-Fresnelintegralformula,ananalyticalexpressionforageneralizedHermite-Hyperbolic Cosine-Gaussianbeampropagatinginchiralmediaisderived.Basedonthis,thepropagationpropertiesofsuchbeamsare
References
[1]
Aggarwal, M., Vij, S. and Kant, N. (2014) Propagation of Cosh Gaussian Laser Beam in Plasma with Density Ripple in Relativistic-Ponderomotive Regime. Optik, 125, 5081-5084. https://doi.org/10.1016/j.ijleo.2014.04.098
[2]
Pendry, J.B. (2004) A Chiral Route to Negative Refraction. Science, 306, 1353-1355. https://doi.org/10.1126/science.1104467
[3]
Casperson, L.W., Hall, D.G. and Tovar, A.A. (1997) Sinusoidal-Gaussian Beams in Complex Optical Systems. Journal of the Optical Society of America A, 14, 3341-3348. https://doi.org/10.1364/josaa.14.003341
[4]
Chern, R. and Chang, P. (2013) Negative Refraction and Backward Wave in Chiral Mediums: Illustrations of Gaussian Beams. Journal of Applied Physics, 113, Article ID: 153504. https://doi.org/10.1063/1.4800864
[5]
Deng, F., Yu, W., Huang, J., Zhao, R., Lin, J. and Deng, D. (2016) Propagation of Airy-Gaussian Beams in a Chiral Medium. The European Physical Journal D, 70, Article No. 87. https://doi.org/10.1140/epjd/e2016-60677-8
[6]
Hricha, Z. and Belafhal, A. (2005) Focusing Properties and Focal Shift in Hyperbolic-Cosine-Gaussian Beams. Optics Communications, 253, 242-249. https://doi.org/10.1016/j.optcom.2005.04.081
[7]
Hricha, Z., Yaalou, M. and Belafhal, A. (2021) Paraxial Propagation and Focusing of Higher-Order Cosh-Gaussian Beams. Journal of Modern Optics, 68, 742-752. https://doi.org/10.1080/09500340.2021.1945156
[8]
Hua, S., Liu, Y., Zhang, H., Tang, L. and Feng, Y. (2017) Propagation of an Airy-Gaussian-Vortex Beam in a Chiral Medium. Optics Communications, 388, 29-37. https://doi.org/10.1016/j.optcom.2016.11.001
[9]
Hui, Y., Cui, Z., Li, Y., Zhao, W. and Han, Y. (2018) Propagation and Dynamical Characteristics of a Bessel-Gaussian Beam in a Chiral Medium. Journal of the Optical Society of America A, 35, 1299-1305. https://doi.org/10.1364/josaa.35.001299
[10]
Kwon, D., Werner, P.L. and Werner, D.H. (2008) Optical Planar Chiral Metamaterial Designs for Strong Circular Dichroism and Polarization Rotation. Optics Express, 16, 11802-11807. https://doi.org/10.1364/oe.16.011802
[11]
Liu, X. and Zhao, D. (2014) Propagation of a Vortex Airy Beam in Chiral Medium. Optics Communications, 321, 6-10. https://doi.org/10.1016/j.optcom.2014.01.068
[12]
Saad, F. and Belafhal, A. (2022) Investigation on Propagation Properties of a New Optical Vortex Beam: Generalized Hermite-Cosh-Gaussian Beam. Optical and Quantum Electronics, 55, Article No. 83. https://doi.org/10.1007/s11082-022-04292-5
[13]
Xie, J., Zhang, J., Ye, J., Liu, H., Liang, Z., Long, S., et al. (2018) Paraxial Propagation of the First-Order Chirped Airy Vortex Beams in a Chiral Medium. Optics Express, 26, 5845-5856. https://doi.org/10.1364/oe.26.005845
[14]
Yang, X., Wu, Z. and Qu, T. (2020) Paraxial Propagation of Cosh-Airy Vortex Beams in Chiral Medium. Chinese Physics B, 29, Article ID: 034201. https://doi.org/10.1088/1674-1056/ab683f
[15]
Moshkelgosha, M. (2019) Controlling the Relativistic Self-Focusing of Hermite-Cosh-Gaussian Beams in Plasma. Optik, 182, 80-87. https://doi.org/10.1016/j.ijleo.2018.12.190
[16]
Qiu, Y. and Liu, Z. (2024) Propagation of Tricomi-Gaussian Beams in a Chiral Medium. Results in Physics, 58, Article ID: 107457. https://doi.org/10.1016/j.rinp.2024.107457
[17]
Yaalou, M., Hricha, Z. and Belafhal, A. (2023) Paraxial Propagation of Hermite Cosine-Hyperbolic-Gaussian Beams in a Chiral Medium. Optical and Quantum Electronics, 55, Article No. 1281. https://doi.org/10.1007/s11082-023-05585-z
[18]
Zeng, Z. and Deng, D. (2019) Paraxial Propagation of Pearcey Gaussian Beams with the Astigmatic Phase in the Chiral Medium. Journal of the Optical Society of America B, 37, 30-37. https://doi.org/10.1364/josab.37.000030
[19]
Tang, B., Li, Z., Palacios, E., Liu, Z., Butun, S. and Aydin, K. (2017) Chiral-Selective Plasmonic Metasurface Absorbers Operating at Visible Frequencies. IEEE Photonics Technology Letters, 29, 295-298. https://doi.org/10.1109/lpt.2016.2647262
[20]
Wang, W., Mi, Z., Zhang, L., Wang, B., Han, K., Lei, C., et al. (2023) The Abruptly Autofocusing Characteristics of the Circular Airyprime Beam in a Chiral Medium. Optics Communications, 549, Article ID: 129879. https://doi.org/10.1016/j.optcom.2023.129879
[21]
Zhang, S., Park, Y., Li, J., Lu, X., Zhang, W. and Zhang, X. (2009) Negative Refractive Index in Chiral Metamaterials. Physical Review Letters, 102, Article ID: 023901. https://doi.org/10.1103/physrevlett.102.023901
[22]
Zhang, Y., Wang, L. and Zhang, Z. (2017) Circular Dichroism in Planar Achiral Plasmonic L-Shaped Nanostructure Arrays. IEEE Photonics Journal, 9, 1-7. https://doi.org/10.1109/jphot.2017.2670783
[23]
Zhou, G. and Liu, F. (2008) Far Field Structural Characteristics of Cosh-Gaussian Beam. Optics & Laser Technology, 40, 302-308. https://doi.org/10.1016/j.optlastec.2007.05.004
[24]
Zhuang, F., Du, X. and Zhao, D. (2011) Polarization Modulation for a Stochastic Electromagnetic Beam Passing through a Chiral Medium. Optics Letters, 36, 2683-2685. https://doi.org/10.1364/ol.36.002683
[25]
Collins, S.A. (1970) Lens-System Diffraction Integral Written in Terms of Matrix Optics. Journal of the Optical Society of America, 60, 1168-1177. https://doi.org/10.1364/josa.60.001168
[26]
Gradshteyn, I.S. and Ryzhik, I.M. (1994) Tables of Integrals, Series, and Product. 5th Edition, Academic Press.