|
基于空间稀疏主成分分析的银川充电站布局
|
Abstract:
为了实现“双碳”目标,助力新能源电动汽车的发展,需进行充电基础设施的先行规划。针对目前充电站的最初待选点的选址缺乏科学支撑的问题,本文拟构建公里级的充电站最初选址模型,为充电站的最初选址提供科学、精准的依据。以银川市为研究区,采用网格划分法将研究区划分成公里级网格,选择对充电站分布影响较大的标准路网密度、各类POI点、GDP、人口密度等主要因素,基于空间稀疏主成分分析方法,构建充电站需求指数,并结合充电站的服务半径、现有充电站数量,构建充电站需求指数的修正模型,进而对拟新建充电站进行空间、数量上的分配,以此获取银川市每个网格上公里级的建议新建充电站数量。通过上述方法的分配结果表明:充电站选址分配区域集中在银川市庆兴区、金凤区与贺兰县、永宁县、西夏区交界处,可以弥补这些相对发达区域充电站的不足。本研究构建的公里级的充电站最初选址模型为后续充电站布局的优化提供了参考。
In order to achieve the goal of “double-carbon” and help the development of new energy electric vehicles, the first planning of charging infrastructure must be carried out. In view of the lack of scientific support for the initial site selection of charging stations, this paper plans to build the initial site selection model of km-level charging stations to provide a scientific and accurate basis for the initial site selection of charging stations. Taking Yinchuan City as the study area, the meshing method is used to divide the study area into km-level grid, selecting standard road network density, various POI points, GDP, population density and other major factors that have a greater impact on the distribution of charging stations, based on space sparse principal component analysis, building charging station demand index, and according to the service radius and the number of existing charging stations, building charging station demand index correction model, and then the proposed new charging stations are allocated spatially and quantitatively, so as to obtain the number of proposed new charging stations at the km-level on each grid in Yinchuan City. The allocation results of the above method show that the site selection and distribution area of charging stations is concentrated at the junction of Qingxing, Jinfeng and Helan, Yongning and Xixia District of Yinchuan City, which makes up for the shortage of charging stations in these relatively developed areas. In this study, the initial site selection model of km-level charging station provides a reference for the subsequent optimization of charging station layout.
[1] | 李晓易, 谭晓雨, 吴睿, 等. 交通运输领域碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 15-21. |
[2] | 李晓敏, 刘毅然. 充电基础设施对新能源汽车推广的影响研究[J]. 中国软科学, 2023(1): 63-72. |
[3] | 张厚明. 我国新能源汽车充电桩新基建存在的问题与建议[J]. 科学管理研究, 2020, 38(5): 83-86. |
[4] | Tzamakos, D., Iliopoulou, C. and Kepaptsoglou, K. (2023) Electric Bus Charging Station Location Optimization Considering Queues. International Journal of Transportation Science and Technology, 12, 291-300. https://doi.org/10.1016/j.ijtst.2022.02.007 |
[5] | El Hafdaoui, H., El Alaoui, H., Mahidat, S., El Harmouzi, Z. and Khallaayoun, A. (2023) Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations. Energies, 16, Article 753. https://doi.org/10.3390/en16020753 |
[6] | Vansola, B., Minal, and Shukla, R.N. (2022) GIS-Based Model for Optimum Location of Electric Vehicle Charging Stations. In: Anjaneyulu, M.V.L.R., Harikrishna, M., Arkatkar, S.S. and Veeraragavan, A., Eds., Recent Advances in Transportation Systems Engineering and Management, Springer, 113-126. https://doi.org/10.1007/978-981-19-2273-2_8 |
[7] | Ahn, Y. and Yeo, H. (2015) An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles. PLOS ONE, 10, e0141307. https://doi.org/10.1371/journal.pone.0141307 |
[8] | Lopes, J.C., Faustino, F.J., Trujillo, J.D.M., Sousa, T., Padilha-Fetrin, A., Brito, J.A.S., et al. (2021). Load Estimation to the Planning for Electric Vehicle Public Charging Stations in Urban Zones Using Spatial Analysis and Traffic Simulations. CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Online, 20-23 September 2021, 2685-2689. https://doi.org/10.1049/icp.2021.1535 |
[9] | Kınay, Ö.B., Gzara, F. and Alumur, S.A. (2021) Full Cover Charging Station Location Problem with Routing. Transportation Research Part B: Methodological, 144, 1-22. |
[10] | 郭丽苹, 高佳宁, 罗瑞琪, 熊帅. 基于POI数据的天津市汽车充电站布局优化[J]. 交通与运输, 2022, 38(6): 75-79. |
[11] | 毛薇, 谢莉莉. 基于ArcGIS空间分析技术的电动汽车充电站选址渐进优化布局研究[J]. 物流技术, 2019, 38(6): 56-60. |
[12] | 朱黎明. 基于空间负荷预测和电动汽车快充需求预测的充电站选址规划研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2016. |
[13] | 于海东, 黄敏, 李帅, 等. 考虑行程数据的电动出租车充电需求预测及充电桩增量规划[J]. 山东电力技术, 2022, 49(5): 28-36, 49. |
[14] | 朱昊堃. 西安中心城区电动汽车公共充电站布局方法研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2022. |
[15] | 周灿. 基于全局主成分分析法的城市建筑业竞争力评价研究[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2023. |
[16] | 李航鹤, 马腾辉, 王坤, 等. 基于最小累积阻力模型(MCR)和空间主成分分析法(SPCA)的沛县北部生态安全格局构建研究[J]. 生态与农村环境学报, 2020, 36(8): 1036-1045. |
[17] | 张海英, 李沁憶, 赵盼, 等. 基于稀疏主成分回归的综合性人文社会科学类期刊质量的影响因素分析[J]. 湖南大学学报(社会科学版), 2022, 36(6): 159-166. |
[18] | 梅雪萍. 基于主成分分析的四川省经济发展影响因素评价研究[J]. 中国集体经济, 2023(5): 33-36. |
[19] | 张庆. 基于主成分分析的郑州市降雨量因素评价[J]. 红水河, 2023, 42(1): 37-41. |
[20] | 喻胜华, 张新波. 稀疏主成分在综合评价中的应用[J]. 财经理论与实践, 2009, 30(5): 106-109. |
[21] | Zou, H., Hastie, T. and Tibshirani, R. (2006) Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics, 15, 265-286. https://doi.org/10.1198/106186006x113430 |
[22] | 武力. 电动汽车充电设施规划方法研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2012. |