全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

堆石混凝土导热系数影响因素试验研究
Influencing Factors and Research Progress of Thermal Conductivity of Rock-Fill Concrete

DOI: 10.12677/hjce.2024.139191, PP. 1767-1774

Keywords: 堆石混凝土,导热系数,温控防裂,堆石率
Rock-Fill Concrete
, Thermal Conductivity, Temperature Control and Crack Prevention, Thermal Conductivity Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

堆石混凝土(Rock-Filled Concrete, RFC)作为一种新型的低碳环保混凝土,由大块堆石(粒径 > 300 mm)和自密实混凝土(Self-Compacting, SCC)组成,且是一种非均质材料,堆石混凝土因掺入大粒径的骨料从而使其内部微观结构、力学性能与热力学性能都与普通混凝土有所区别。导热系数是堆石混凝土温控防裂的重要参数指标,本文针对影响堆石混凝土导热性能的主要影响因素,如堆石混凝土中堆石率、堆石种类以及各种环境因素等,来分析堆石混凝土导热系数的变化规律。本文进行导热系数试验,对堆石混凝土导热系数的影响因素(堆石率)进行研究,结果表明:随着堆石率的增大,堆石混凝土的导热系数也会随之增大。
Rock-fill concrete (RFC) as a new type of low-carbon environmental protection concrete. It is composed of massive rock-fill (grain size > 300 mm) and self compacting concrete (SCC), and it is a heterogeneous material. The internal microstructure, mechanical properties and thermodynamic properties of rock fill concrete are different from ordinary concrete due to the addition of large size aggregates. At present, there are many researches on the mechanical properties of rock-fill concrete, but few on the thermodynamic properties. Thermal conductivity is a key index for temperature control and crack prevention of rock-fill concrete. Aiming at the main influencing factors of thermal conductivity of rock-fill concrete, such as rock-fill rate, rock-fill type and various environmental factors in rock-fill concrete, the variation law of thermal conductivity of rock-fill concrete is analyzed. Some studies show that the thermal conductivity of rock-fill concrete is directly affected by the rock-fill rate, and the thermal conductivity of rock-fill concrete increases with the increase of the rock-fill rate; in addition, the thermal conductivity of different rock-fill types is also different.

References

[1]  Asadi, I., Shafigh, P., Abu Hassan, Z.F.B. and Mahyuddin, N.B. (2018) Thermal Conductivity of Concrete—A Review. Journal of Building Engineering, 20, 81-93.
https://doi.org/10.1016/j.jobe.2018.07.002
[2]  Singh Rathore, P.K., Shukla, S.K. and Gupta, N.K. (2020) Potential of Microencapsulated PCM for Energy Savings in Buildings: A Critical Review. Sustainable Cities and Society, 53, Article ID: 101884.
https://doi.org/10.1016/j.scs.2019.101884
[3]  Real, S., Gomes, M.G., Moret Rodrigues, A. and Bogas, J.A. (2016) Contribution of Structural Lightweight Aggregate Concrete to the Reduction of Thermal Bridging Effect in Buildings. Construction and Building Materials, 121, 460-470.
https://doi.org/10.1016/j.conbuildmat.2016.06.018
[4]  Yue, G., Ma, Z., Liu, M., Liang, C. and Ba, G. (2020) Damage Behavior of the Multiple ITZs in Recycled Aggregate Concrete Subjected to Aggressive Ion Environment. Construction and Building Materials, 245, Article ID: 118419.
https://doi.org/10.1016/j.conbuildmat.2020.118419
[5]  Thomas, C., de Brito, J., Cimentada, A. and Sainz-Aja, J.A. (2020) Macro-and Micro-Properties of Multi-Recycled Aggregate Concrete. Journal of Cleaner Production, 245, Article ID: 118843.
https://doi.org/10.1016/j.jclepro.2019.118843
[6]  张立勃, 张然然, 杨卓. 骨料对保温混凝土长期隔热性能的影响[J]. 建筑技术, 2021, 52(9): 1083-1086.
[7]  朱传庆, 陈驰, 杨亚波, 邱楠生. 岩石热导率影响因素实验研究及其对地热资源评估的启示[J]. 石油科学通报, 2022, 7(3): 321-333.
[8]  徐拴海, 沈浩. 岩石导热系数影响因素及预测研究综述[J]. 科学技术与工程, 2022, 22(16): 6369-6376.
[9]  宋小庆, 江明, 彭钦, 熊沛文. 贵州主要岩石地层热物性参数特征及影响因素分析[J]. 地质学报, 2019, 93(8): 2092-2103.
[10]  张冉. 考虑温湿度影响的水工混凝土导热系数测试研究[D]: [硕士学位论文]. 宜昌: 三峡大学, 2021.
[11]  谌超, 刘松, 邓华伟, 等. 大体积混凝土温度及温度应力影响因素研究[J]. 材料导报, 2015, 29(S2): 198-201.
[12]  宫经伟, 陈鹏, 曹国举, 陈瑞, 贺传卿. 考虑孔溶液相变的寒区混凝土导热系数计算模型[J]. 建筑材料学报, 2023, 26(5): 465-474.
[13]  余舜尧, 徐小蓉, 邱流潮, 金峰. 堆石混凝土浇筑前后的非均质温度分布试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1388-1400.
[14]  何世钦, 陈宸, 周虎, 等. 堆石混凝土综合性能的研究现状[J]. 水力发电学报, 2017, 36(5): 10-18.
[15]  黄绵松, 周虎, 安雪晖, 等. 堆石混凝土综合性能的试验研究[J]. 建筑材料学报, 2008, 11(2): 206-211.
[16]  金峰, 安雪晖, 石建军, 等. 堆石混凝土及堆石混凝土大坝[J]. 水利学报, 2005, 36(11): 1347-1352.
[17]  徐小蓉, 金峰, 周虎, 等. 堆石混凝土筑坝技术发展与创新综述[J]. 三峡大学学报(自然科学版), 2022, 44(2): 1-11.
[18]  金峰, 张国新, 娄诗建, 等. 整体浇筑堆石混凝土拱坝拱梁分载法分析研究[J]. 水利学报, 2020, 51(10): 1307-1314.
[19]  罗滔, 黄陈霖, 张天祺, 等. 堆石混凝土劈裂抗拉破坏过程中声发射特征分析[J]. 水利水电技术(中英文), 2024, 55(1): 40-50.
[20]  戎君明, 李可长, 黄小平, 等. GB/T50080-2002. 普通混凝土拌合物性能试验方法标准[S]. 北京: 中国建筑科学研究院, 2007.
[21]  李晓斌, 桂苗苗, 王世杰, 等. JGJ/T 283-2012. 自密实混凝土应用技术规程[S]. 北京: 中国建筑工业出版社, 2012.
[22]  王鼎. 堆石混凝土绝热温升试验与温升机制研究[D]: [硕士学位论文]. 西安: 西京学院, 2023.
[23]  彭澎. 新编《水工混凝土施工规范》简介[J]. 中国三峡建设, 2003(2): 27.
[24]  唐然. mPCMs/NanoSiO2复合改性混凝土抗冻性及损伤劣化分析[D]: [硕士学位论文]. 西安: 西京学院, 2022.
[25]  刘昊. 堆石混凝土综合性能试验与温度应力研究[D]: [硕士学位论文]. 北京: 清华大学, 2010.
[26]  Wang, J., Carson, J.K., North, M.F. and Cleland, D.J. (2006) A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials. International Journal of Heat and Mass Transfer, 49, 3075-3083.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007
[27]  Gonzo, E.E. (2002) Estimating Correlations for the Effective Thermal Conductivity of Granular Materials. Chemical Engineering Journal, 90, 299-302.
https://doi.org/10.1016/s1385-8947(02)00121-3
[28]  Harmathy, T.Z. (1970) Thermal Properties of Concrete at Temperature. Journal of Material, 5, 47.
[29]  Campbell-Allen, D. and Thorne, C.P. (1963) The Thermal Conductivity of Concrete. Magazine of Concrete Research, 15, 39-48.
https://doi.org/10.1680/macr.1963.15.43.39
[30]  Khan, M.I. (2002) Factors Affecting the Thermal Properties of Concrete and Applicability of Its Prediction Models. Building and Environment, 37, 607-614.
https://doi.org/10.1016/s0360-1323(01)00061-0
[31]  Gong, L., Wang, Y., Cheng, X., Zhang, R. and Zhang, H. (2014) A Novel Effective Medium Theory for Modelling the Thermal Conductivity of Porous Materials. International Journal of Heat and Mass Transfer, 68, 295-298.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.043

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133