全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

毛蕊花糖苷药理活性和作用机制研究进展
Advancements in the Pharmacological Activity and Mechanisms of Action of Verbascoside

DOI: 10.12677/pi.2024.135052, PP. 438-450

Keywords: 毛蕊花糖苷,药理作用,研究进展
Verbascoside
, Pharmacological Effects, Research Advancements

Full-Text   Cite this paper   Add to My Lib

Abstract:

毛蕊花糖苷(Verbascoside, VB),作为苯乙醇苷类多酚化合物中的代表性成分,广泛存在于肉苁蓉等多种药用植物中,具备丰富的生物活性。现代药理研究表明,VB不仅在抗炎、抗氧化、神经保护、抗癌上效果显著,还能抗菌,调节免疫系统,保护肝脏、肾脏和肺,缓解疲劳,促进伤口愈合,对多种疾病具有潜在的治疗价值。本文综述了近年来关于VB的药理活性和作用机制的研究,旨在为VB的深入研究与应用提供参考。
Verbascoside (VB), a representative phenylethanoid glycoside polyphenolic compound, is abundantly found in various medicinal plants such as Cistanches Herba. Extensive biological activities have been documented. Modern pharmacological studies reveal that VB not only significantly benefits anti-inflammatory, antioxidant, neuroprotective, and anticancer activities, but also possesses antimicrobial properties, and protects the livers, kidneys and lungs. It alleviates fatigue and promotes wound healing, offering potential therapeutic value for multiple diseases. This paper reviews recent research on the pharmacological activities and mechanisms of action of VB, aiming to provide references for further research and application of VB.

References

[1]  Alipieva, K., Korkina, L., Orhan, I.E. and Georgiev, M.I. (2014) Verbascoside—A Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance. Biotechnology Advances, 32, 1065-1076.
https://doi.org/10.1016/j.biotechadv.2014.07.001
[2]  Xiao, Y., Ren, Q. and Wu, L. (2022) The Pharmacokinetic Property and Pharmacological Activity of Acteoside: A Review. Biomedicine & Pharmacotherapy, 153, Article ID: 113296.
https://doi.org/10.1016/j.biopha.2022.113296
[3]  Yan, Y., Song, Q., Chen, X., Li, J., Li, P., Wang, Y., et al. (2017) Simultaneous Determination of Components with Wide Polarity and Content Ranges in Cistanche Tubulosa Using Serially Coupled Reverse Phase-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry. Journal of Chromatography A, 1501, 39-50.
https://doi.org/10.1016/j.chroma.2017.04.034
[4]  Lu, D., Zhang, J., Yang, Z., Liu, H., Li, S., Wu, B., et al. (2013) Quantitative Analysis of Cistanches Herba Using High‐performance Liquid Chromatography Coupled with Diode Array Detection and High‐Resolution Mass Spectrometry Combined with Chemometric Methods. Journal of Separation Science, 36, 1945-1952.
https://doi.org/10.1002/jssc.201300135
[5]  石海霞, 肖承鸿, 周涛, 等. 地黄不同种质的遗传多样性和质量分析[J]. 中国中药杂志, 2018, 43(21): 4210-4216.
[6]  Qian, C., Wang, S., Chen, H. and Li, J. (2024) Ultrasound‐assisted Matrix Solid‐Phase Extraction Based on Deep Eutectic Solvents and Zinc Oxide: Extraction and Determination of Six Active Ingredients in Ligustri Lucidi Fructus. Journal of Separation Science, 47, e2400275.
https://doi.org/10.1002/jssc.202400275
[7]  Laanet, P., Bragina, O., Jõul, P. and Vaher, M. (2024) Plantago Major and Plantago Lanceolata Exhibit Antioxidant and Borrelia Burgdorferi Inhibiting Activities. International Journal of Molecular Sciences, 25, Article 7112.
https://doi.org/10.3390/ijms25137112
[8]  Pongkitwitoon, B., Putalun, W., Triwitayakorn, K., Kitisripanya, T., Kanchanapoom, T. and Boonsnongcheep, P. (2024) Anti-inflammatory Activity of Verbascoside-And Isoverbascoside-Rich Lamiales Medicinal Plants. Heliyon, 10, e23644.
https://doi.org/10.1016/j.heliyon.2023.e23644
[9]  Zhang, W., Zhang, P., Xu, L., Gao, K., Zhang, J., Yao, M., et al. (2024) Ethanol Extract of Verbena Officinalis Alleviates Mcao-Induced Ischaemic Stroke by Inhibiting IL17A Pathway-Regulated Neuroinflammation. Phytomedicine, 123, Article ID: 155237.
https://doi.org/10.1016/j.phymed.2023.155237
[10]  Yang, Y., Shao, J., Zhou, Q., Chen, Y., Tian, J. and Hou, L. (2024) Exploration of the Mechanisms of Callicarpa nudiflora Hook. et Arn against Influenza A Virus (H1N1) Infection. Phytomedicine, 123, Article ID: 155240.
https://doi.org/10.1016/j.phymed.2023.155240
[11]  Lee, S., Seo, S., Song, S., Oh, D., Shim, J., Yoon, G., et al. (2020) HPLC Analysis and Antioxidant Evaluation of Acteoside-Rich Osmanthus fragrans Extracts. Journal of Food Quality, 2020, Article ID: 8851285.
https://doi.org/10.1155/2020/8851285
[12]  Lee, H., Kim, J.H., Pang, Q.Q., Jung, P., Cho, E.J. and Lee, S. (2020) Antioxidant Activity and Acteoside Analysis of Abeliophyllum Distichum. Antioxidants, 9, Article 1148.
https://doi.org/10.3390/antiox9111148
[13]  Biswas, S.K. (2016) Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Medicine and Cellular Longevity, 2016, Article ID: 5698931.
https://doi.org/10.1155/2016/5698931
[14]  Lugrin, J., Rosenblatt-Velin, N., Parapanov, R. and Liaudet, L. (2013) The Role of Oxidative Stress during Inflammatory Processes. Biological Chemistry, 395, 203-230.
https://doi.org/10.1515/hsz-2013-0241
[15]  Cui, J., Tang, W., Wang, W., Yi, L., Teng, F., Xu, F., et al. (2023) Acteoside Alleviates Asthma by Modulating Ros-Responsive NF-κB/MAPK Signaling Pathway. International Immunopharmacology, 116, Article ID: 109806.
https://doi.org/10.1016/j.intimp.2023.109806
[16]  Song, H.S., Choi, M.Y., Ko, M.S., Jeong, J.M., Kim, Y.H., Jang, B.H., et al. (2012) Competitive Inhibition of Cytosolic Ca2+-Dependent Phospholipase A2 by Acteoside in RBL-2H3 Cells. Archives of Pharmacal Research, 35, 905-910.
https://doi.org/10.1007/s12272-012-0516-x
[17]  Pesce, M., Franceschelli, S., Ferrone, A., De Lutiis, M.A., Patruno, A., Grilli, A., et al. (2015) Verbascoside Down‐regulates Some Pro‐Inflammatory Signal Transduction Pathways by Increasing the Activity of Tyrosine Phosphatase SHP‐1 in the U937 Cell Line. Journal of Cellular and Molecular Medicine, 19, 1548-1556.
https://doi.org/10.1111/jcmm.12524
[18]  Lee, J.Y., Woo, E. and Kang, K.W. (2005) Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase Expression by Acteoside through Blocking of AP-1 Activation. Journal of Ethnopharmacology, 97, 561-566.
https://doi.org/10.1016/j.jep.2005.01.005
[19]  Sahpaz, S., Garbacki, N., Tits, M. and Bailleul, F. (2002) Isolation and Pharmacological Activity of Phenylpropanoid Esters from Marrubium Vulgare. Journal of Ethnopharmacology, 79, 389-392.
https://doi.org/10.1016/s0378-8741(01)00415-9
[20]  Chang, J., Chuang, H., Hsiao, G., Hou, T., Wang, C., Huang, S., et al. (2022) Acteoside Exerts Immunomodulatory Effects on Dendritic Cells via Aryl Hydrocarbon Receptor Activation and Ameliorates Th2-Mediated Allergic Asthma by Inducing Foxp3+ Regulatory T Cells. International Immunopharmacology, 106, Article ID: 108603.
https://doi.org/10.1016/j.intimp.2022.108603
[21]  Li, Y., Yu, H., Jin, Y., Li, M. and Qu, C. (2018) Verbascoside Alleviates Atopic Dermatitis-Like Symptoms in Mice via Its Potent Anti-Inflammatory Effect. International Archives of Allergy and Immunology, 175, 220-230.
https://doi.org/10.1159/000486958
[22]  Wu, M., Yu, S., Chen, Y., Meng, W., Chen, H., He, J., et al. (2022) Acteoside Promotes B Cell-Derived IL-10 Production and Ameliorates Autoimmunity. Journal of Leukocyte Biology, 112, 875-885.
https://doi.org/10.1002/jlb.3ma0422-510r
[23]  Yoou, M., Kim, H. and Jeong, H. (2015) Acteoside Attenuates TSLP-Induced Mast Cell Proliferation via Down-Regulating MDM2. International Immunopharmacology, 26, 23-29.
https://doi.org/10.1016/j.intimp.2015.03.003
[24]  Lee, J.H., Lee, J.Y., Kang, H.S., Jeong, C.H., Moon, H., Whang, W.K., et al. (2006) The Effect of Acteoside on Histamine Release and Arachidonic Acid Release in RBL-2H3 Mast Cells. Archives of Pharmacal Research, 29, 508-513.
https://doi.org/10.1007/bf02969425
[25]  Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al. (2017) Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 8416763.
https://doi.org/10.1155/2017/8416763
[26]  Wang, X., Chang, X., Luo, X., Su, M., Xu, R., Chen, J., et al. (2019) An Integrated Approach to Characterize Intestinal Metabolites of Four Phenylethanoid Glycosides and Intestinal Microbe-Mediated Antioxidant Activity Evaluation in Vitro Using UHPLC-Q-Exactive High-Resolution Mass Spectrometry and a 1, 1-Diphenyl-2-Picrylhydrazyl-Based Assay. Frontiers in Pharmacology, 10, Article 826.
https://doi.org/10.3389/fphar.2019.00826
[27]  Li, M., Xu, T., Zhou, F., Wang, M., Song, H., Xiao, X., et al. (2018) Neuroprotective Effects of Four Phenylethanoid Glycosides on H2O2-Induced Apoptosis on PC12 Cells via the Nrf2/ARE Pathway. International Journal of Molecular Sciences, 19, Article 1135.
https://doi.org/10.3390/ijms19041135
[28]  Li, M., Zhou, F., Xu, T., Song, H. and Lu, B. (2018) Acteoside Protects against 6-OHDA-Induced Dopaminergic Neuron Damage via Nrf2-Are Signaling Pathway. Food and Chemical Toxicology, 119, 6-13.
https://doi.org/10.1016/j.fct.2018.06.018
[29]  Gao, W., Zheng, S., Hwang, E., Yi, T. and Wang, Y. (2021) Effects of Phenylethanol Glycosides from Orobanche cernua Loefling on UVB-Induced Skin Photodamage: A Comparative Study. Photochemical & Photobiological Sciences, 20, 599-614.
https://doi.org/10.1007/s43630-021-00038-6
[30]  Sgarbossa, A., Dal Bosco, M., Pressi, G., Cuzzocrea, S., Dal Toso, R. and Menegazzi, M. (2012) Phenylpropanoid Glycosides from Plant Cell Cultures Induce Heme Oxygenase 1 Gene Expression in a Human Keratinocyte Cell Line by Affecting the Balance of NRF2 and BACH1 Transcription Factors. Chemico-Biological Interactions, 199, 87-95.
https://doi.org/10.1016/j.cbi.2012.06.006
[31]  Cui, Q., Pan, Y., Zhang, W., Zhang, Y., Ren, S., Wang, D., et al. (2018) Metabolites of Dietary Acteoside: Profiles, Isolation, Identification, and Hepatoprotective Capacities. Journal of Agricultural and Food Chemistry, 66, 2660-2668.
https://doi.org/10.1021/acs.jafc.7b04650
[32]  Zhao, Y., Wang, S., Pan, J. and Ma, K. (2023) Verbascoside: A Neuroprotective Phenylethanoid Glycosides with Anti-Depressive Properties. Phytomedicine, 120, Article ID: 155027.
https://doi.org/10.1016/j.phymed.2023.155027
[33]  Teleanu, D.M., Niculescu, A., Lungu, I.I., Radu, C.I., Vladâcenco, O., Roza, E., et al. (2022) An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 23, Article 5938.
https://doi.org/10.3390/ijms23115938
[34]  Han, Z., Wang, B., Wen, Y., Li, Y., Feng, C., Ding, X., et al. (2024) Acteoside Alleviates Lipid Peroxidation by Enhancing Nrf2-Mediated Mitophagy to Inhibit Ferroptosis for Neuroprotection in Parkinson’s Disease. Free Radical Biology and Medicine, 223, 493-505.
https://doi.org/10.1016/j.freeradbiomed.2024.07.018
[35]  Lyman, M., Lloyd, D.G., Ji, X., Vizcaychipi, M.P. and Ma, D. (2014) Neuroinflammation: The Role and Consequences. Neuroscience Research, 79, 1-12.
https://doi.org/10.1016/j.neures.2013.10.004
[36]  Xia, C., Guo, Y., Lian, W., Yan, Y., Ma, B., Cheng, Y., et al. (2023) The NLRP3 Inflammasome in Depression: Potential Mechanisms and Therapies. Pharmacological Research, 187, Article ID: 106625.
https://doi.org/10.1016/j.phrs.2022.106625
[37]  Wang, Y., Wu, S., Li, Q., Lang, W., Li, W., Jiang, X., et al. (2022) Salsolinol Induces Parkinson’s Disease through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside. Neurotoxicity Research, 40, 1948-1962.
https://doi.org/10.1007/s12640-022-00608-1
[38]  Zhou, H., Zhang, C. and Huang, C. (2021) Verbascoside Attenuates Acute Inflammatory Injury Caused by an Intracerebral Hemorrhage through the Suppression of NLRP3. Neurochemical Research, 46, 770-777.
https://doi.org/10.1007/s11064-020-03206-9
[39]  Liao, Y., Hu, J., Guo, C., Wen, A., Wen, L., Hou, Q., et al. (2024) Acteoside Alleviates Blood-Brain Barrier Damage Induced by Ischemic Stroke through Inhibiting Microglia HMGB1/TLR4/NLRP3 Signaling. Biochemical Pharmacology, 220, Article ID: 115968.
https://doi.org/10.1016/j.bcp.2023.115968
[40]  Chen, S., Liu, H., Wang, S., Jiang, H., Gao, L., Wang, L., et al. (2022) The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling. Nutrients, 14, Article 1417.
https://doi.org/10.3390/nu14071417
[41]  Li, M., Zhu, M., Quan, W., Huang, W., Liu, X., Zhang, C., et al. (2023) Acteoside Palliates D-Galactose Induced Cognitive Impairment by Regulating Intestinal Homeostasis. Food Chemistry, 421, Article ID: 135978.
https://doi.org/10.1016/j.foodchem.2023.135978
[42]  Mao, Q., Zhang, H., Zhang, Z., Lu, Y., Pan, J., Guo, D., et al. (2024) Co-Decoction of Lilii Bulbus and Radix Rehmannia Recens and Its Key Bioactive Ingredient Verbascoside Inhibit Neuroinflammation and Intestinal Permeability Associated with Chronic Stress-Induced Depression via the Gut Microbiota-Brain Axis. Phytomedicine, 129, Article ID: 155510.
https://doi.org/10.1016/j.phymed.2024.155510
[43]  Ran, Z., Ju, B., Cao, L., Hou, Q., Wen, L., Geng, R., et al. (2023) Microbiome-Metabolomics Analysis Reveals the Potential Effect of Verbascoside in Alleviating Cognitive Impairment in db/db Mice. Food & Function, 14, 3488-3508.
https://doi.org/10.1039/d2fo03110h
[44]  Aimaiti, M., Wumaier, A., Aisa, Y., Zhang, Y., Xirepu, X., Aibaidula, Y., et al. (2021) Acteoside Exerts Neuroprotection Effects in the Model of Parkinson’s Disease via Inducing Autophagy: Network Pharmacology and Experimental Study. European Journal of Pharmacology, 903, Article ID: 174136.
https://doi.org/10.1016/j.ejphar.2021.174136
[45]  Ning, S., Chen, Y., Shao, J., Zhu, H., Zhang, Z. and Miao, J. (2024) The Effects of Acteoside on Locomotor Recovery after Spinal Cord Injury—The Role of Autophagy and Apoptosis Signaling Pathway. Biomedicine & Pharmacotherapy, 175, Article ID: 116607.
https://doi.org/10.1016/j.biopha.2024.116607
[46]  Qu, Y., Ding, M., Gu, C., Zhang, L., Zhen, R., Chen, J., et al. (2022) Acteoside and Ursolic Acid Synergistically Protects H2O2-Induced Neurotrosis by Regulation of AKT/mTOR Signalling: From Network Pharmacology to Experimental Validation. Pharmaceutical Biology, 60, 1751-1761.
https://doi.org/10.1080/13880209.2022.2098344
[47]  Wang, C., Cai, X., Wang, R., Zhai, S., Zhang, Y., Hu, W., et al. (2020) Neuroprotective Effects of Verbascoside against Alzheimer’s Disease via the Relief of Endoplasmic Reticulum Stress in Aβ-Exposed U251 Cells and APP/PS1 Mice. Journal of Neuroinflammation, 17, Article No. 309.
https://doi.org/10.1186/s12974-020-01976-1
[48]  Gao, L., Wang, D., Ren, J., Tan, X., Chen, J., Kong, Z., et al. (2023) Acteoside Ameliorates Learning and Memory Impairment in APP/PS1 Transgenic Mice by Increasing Aβ Degradation and Inhibiting Tau Hyperphosphorylation. Phytotherapy Research, 38, 1735-1744.
https://doi.org/10.1002/ptr.8006
[49]  Luhata, L.P., Yoshida, Y. and Usuki, T. (2024) Natural Products from Odontonema Strictum Promote Neurite Outgrowth in Neuronal PC12 Cells. Bioorganic Chemistry, 147, Article ID: 107389.
https://doi.org/10.1016/j.bioorg.2024.107389
[50]  Gao, L., Peng, X., Huo, S., Liu, X. and Yan, M. (2015) Memory Enhancement of Acteoside (Verbascoside) in a Senescent Mice Model Induced by a Combination of D-Gal and ALCL3. Phytotherapy Research, 29, 1131-1136.
https://doi.org/10.1002/ptr.5357
[51]  Khan, R.A., Hossain, R., Roy, P., Jain, D., Mohammad Saikat, A.S., Roy Shuvo, A.P., et al. (2022) Anticancer Effects of Acteoside: Mechanistic Insights and Therapeutic Status. European Journal of Pharmacology, 916, Article ID: 174699.
https://doi.org/10.1016/j.ejphar.2021.174699
[52]  Budzianowska, A., Totoń, E., Romaniuk-Drapała, A., Kikowska, M. and Budzianowski, J. (2023) Cytotoxic Effect of Phenylethanoid Glycosides Isolated from Plantago Lanceolata L. Life, 13, Article 556.
https://doi.org/10.3390/life13020556
[53]  Cheimonidi, C., Samara, P., Polychronopoulos, P., Tsakiri, E.N., Nikou, T., Myrianthopoulos, V., et al. (2018) Selective Cytotoxicity of the Herbal Substance Acteoside against Tumor Cells and Its Mechanistic Insights. Redox Biology, 16, 169-178.
https://doi.org/10.1016/j.redox.2018.02.015
[54]  Herbert, J.M., Maffrand, J.P., Taoubi, K., Augereau, J.M., Fouraste, I. and Gleye, J. (1991) Verbascoside Isolated from Lantana Camara, an Inhibitor of Protein Kinase C. Journal of Natural Products, 54, 1595-1600.
https://doi.org/10.1021/np50078a016
[55]  Zhou, L., Feng, Y., Jin, Y., Liu, X., Sui, H., Chai, N., et al. (2014) Verbascoside Promotes Apoptosis by Regulating HIPK2-P53 Signaling in Human Colorectal Cancer. BMC Cancer, 14, Article No. 747.
https://doi.org/10.1186/1471-2407-14-747
[56]  Ren, Y., He, J., Zhao, W. and Ma, Y. (2022) The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization. Frontiers in Oncology, 12, Article 901922.
https://doi.org/10.3389/fonc.2022.901922
[57]  Jiang, J., Cheng, R., Song, A., Lou, Y. and Fan, G. (2024) Multi-Omics Analysis Reveals Mechanism of Schisandra Chinensis Lignans and Acteoside on EMT in Hepatoma Cells via ERK1/2 Pathway. Functional & Integrative Genomics, 24, Article No. 112.
https://doi.org/10.1007/s10142-024-01351-w
[58]  Wu, C., Chen, C., Hsieh, P., Lee, Y., Kuo, W.W., Wu, R.C., et al. (2021) Verbascoside Inhibits the Epithelial‐Mesenchymal Transition of Prostate Cancer Cells through High‐Mobility Group Box 1/Receptor for Advanced Glycation End‐products/TGF‐β Pathway. Environmental Toxicology, 36, 1080-1089.
https://doi.org/10.1002/tox.23107
[59]  Elhashani, S., Glenn, M., Raymant, M., Schmid, M.C. and Mielgo, A. (2024) Expression of Versican Isoforms V0/V1 by Pancreatic Cancer Associated Fibroblasts Increases Fibroblast Proliferation. Pancreatology, 24, 719-731.
https://doi.org/10.1016/j.pan.2024.04.008
[60]  Ji, M., Sun, J. and Zhao, J. (2022) Verbascoside Represses Malignant Phenotypes of Esophageal Squamous Cell Carcinoma Cells by Inhibiting CDC42 via the HMGB1/RAGE Axis. Human & Experimental Toxicology, 41, 1-9.
https://doi.org/10.1177/09603271221127429
[61]  Jia, W., Wang, Z., Zou, M., Lin, J., Li, Y., Zhang, L., et al. (2018) Verbascoside Inhibits Glioblastoma Cell Proliferation, Migration and Invasion While Promoting Apoptosis through Upregulation of Protein Tyrosine Phosphatase SHP-1 and Inhibition of STAT3 Phosphorylation. Cellular Physiology and Biochemistry, 47, 1871-1882.
https://doi.org/10.1159/000491067
[62]  Attia, Y.M., El-Kersh, D.M., Wagdy, H.A. and Elmazar, M.M. (2018) Verbascoside: Identification, Quantification, and Potential Sensitization of Colorectal Cancer Cells to 5-FU by Targeting PI3K/AKT Pathway. Scientific Reports, 8, Article No. 16939.
https://doi.org/10.1038/s41598-018-35083-2
[63]  AkgunCagliyan, G., CortDonmez, A., KilicToprak, E. and Altintas, F. (2022) Verbascoside Potentiates the Effect of Tyrosine Kinase Inhibitors on the Induction of Apoptosis and Oxidative Stress via the Abl-Mediated MAPK Signalling Pathway in Chronic Myeloid Leukaemia. Experimental and Therapeutic Medicine, 24, Article No. 514.
https://doi.org/10.3892/etm.2022.11441
[64]  Martins, G.R., da Fonseca, T.S., Martínez-Fructuoso, L., Simas, R.C., Silva, F.T., Salimena, F.R.G., et al. (2019) Antifungal Phenylpropanoid Glycosides from Lippia rubella. Journal of Natural Products, 82, 566-572.
https://doi.org/10.1021/acs.jnatprod.8b00975
[65]  Shi, C., Ma, Y., Tian, L., Li, J., Qiao, G., Liu, C., et al. (2022) Verbascoside: An Efficient and Safe Natural Antibacterial Adjuvant for Preventing Bacterial Contamination of Fresh Meat. Molecules, 27, Article 4943.
https://doi.org/10.3390/molecules27154943
[66]  Biasibetti, E., Bruni, N., Bigliati, M. and Capucchio, M.T. (2017) Lactoferricin/Verbascoside Topical Emulsion: A Possible Alternative Treatment for Atopic Dermatitis in Dogs. Natural Product Research, 32, 2107-2110.
https://doi.org/10.1080/14786419.2017.1365066
[67]  Li, X., Hou, Y., Zou, H., Wang, Y., Xu, Y., Wang, L., et al. (2024) Unraveling the Efficacy of Verbascoside in Thwarting MRSA Pathogenicity by Targeting Sortase A. Applied Microbiology and Biotechnology, 108, Article No. 360.
https://doi.org/10.1007/s00253-024-13202-6
[68]  Yang, Y., Wang, X., Gao, Y., Wang, H. and Niu, X. (2021) Insight into the Dual Inhibitory Mechanism of Verbascoside Targeting Serine/Threonine Phosphatase Stp1 against Staphylococcus Aureus. European Journal of Pharmaceutical Sciences, 157, Article ID: 105628.
https://doi.org/10.1016/j.ejps.2020.105628
[69]  Fazly Bazzaz, B.S., Khameneh, B., Zahedian Ostad, M.R., et al. (2018) In Vitro Evaluation of Antibacterial Activity of Verbascoside, Lemon Verbena Extract and Caffeine in Combination with Gentamicin against Drug-Resistant Staphylo-coccus aureus and Escherichia coli Clinical Isolates. Avicenna Journal of Phytomedicine, 8, 246-253.
[70]  Zhang, S.J., Zhang, Y.F., Bai, X.H., Zhou, M.Q., Zhang, Z.Y., Zhang, S.X., et al. (2024) Integrated Network Pharmacology Analysis and Experimental Validation to Elucidate the Mechanism of Acteoside in Treating Diabetic Kidney Disease. Drug Design, Development and Therapy, 18, 1439-1457.
https://doi.org/10.2147/dddt.s445254
[71]  Li, X., Liu, Z., He, Z., Wang, X., Li, R., Wang, J., et al. (2023) Acteoside Protects Podocyte against Apoptosis through Regulating AKT/GSK-3β Signaling Pathway in db/db Mice. BMC Endocrine Disorders, 23, Article No. 230.
https://doi.org/10.1186/s12902-023-01483-3
[72]  Wang, Q., Dai, X., Xiang, X., Xu, Z., Su, S., Wei, D., et al. (2021) A Natural Product of Acteoside Ameliorate Kidney Injury in Diabetes db/db Mice and HK-2 Cells via Regulating NADPH/Oxidase‐TGF‐β/Smad Signaling Pathway. Phytotherapy Research, 35, 5227-5240.
https://doi.org/10.1002/ptr.7196
[73]  Zhou, M., Zhang, S., Bai, X., Cai, Y., Zhang, Z., Zhang, P., et al. (2024) Acteoside Delays the Fibrosis Process of Diabetic Nephropathy by Anti-Oxidation and Regulating the Autophagy-Lysosome Pathway. European Journal of Pharmacology, 978, Article ID: 176715.
https://doi.org/10.1016/j.ejphar.2024.176715
[74]  Gao, W., Gao, S., Zhang, Y., Wang, M., Liu, Y., Li, T., et al. (2024) Altered Metabolic Profiles and Targets Relevant to the Protective Effect of Acteoside on Diabetic Nephropathy in db/db Mice Based on Metabolomics and Network Pharmacology Studies. Journal of Ethnopharmacology, 318, Article ID: 117073.
https://doi.org/10.1016/j.jep.2023.117073
[75]  Gao, W., Zhou, Y., Li, C., Liu, T., Zhao, H., Wang, M., et al. (2023) Studies on the Metabolism and Mechanism of Acteoside in Treating Chronic Glomerulonephritis. Journal of Ethnopharmacology, 302, Article ID: 115866.
https://doi.org/10.1016/j.jep.2022.115866
[76]  Lian, J., Xu, Y., Shi, J., Liu, P., Hua, Y., Zhang, C., et al. (2024) Acteoside and Isoacteoside Alleviate Renal Dysfunction and Inflammation in Lipopolysaccharide-Induced Acute Kidney Injuries through Inhibition of NF-κB Signaling Pathway. PLOS ONE, 19, e0303740.
https://doi.org/10.1371/journal.pone.0303740
[77]  Safari Samangani, M., Mehri, S., Aminifard, T., Jafarian, A., Yazdani, P.F. and Hosseinzadeh, H. (2024) Effect of Verbascoside against Acute Kidney Injury Induced by Rhabdomyolysis in Rats. Naunyn-Schmiedebergs Archives of Pharmacology.
https://doi.org/10.1007/s00210-024-03144-1
[78]  Mao, Y., Yu, J., Da, J., Yu, F. and Zha, Y. (2023) Acteoside Alleviates UUO-Induced Inflammation and Fibrosis by Regulating the HMGN1/TLR4/TREM1 Signaling Pathway. PeerJ, 11, e14765.
https://doi.org/10.7717/peerj.14765
[79]  Jia, K., Zhang, Y., Luo, R., Liu, R., Li, Y., Wu, J., et al. (2023) Acteoside Ameliorates Hepatic Ischemia-Reperfusion Injury via Reversing the Senescent Fate of Liver Sinusoidal Endothelial Cells and Restoring Compromised Sinusoidal Networks. International Journal of Biological Sciences, 19, 4967-4988.
https://doi.org/10.7150/ijbs.87332
[80]  Salvoza, N., Bedin, C., Saccani, A., Tiribelli, C. and Rosso, N. (2022) The Beneficial Effects of Triterpenic Acid and Acteoside in an in Vitro Model of Nonalcoholic Steatohepatitis (NASH). International Journal of Molecular Sciences, 23, Article 3562.
https://doi.org/10.3390/ijms23073562
[81]  Khullar, M., Sharma, A., Wani, A., Sharma, N., Sharma, N., Chandan, B.K., et al. (2019) Acteoside Ameliorates Inflammatory Responses through NFkB Pathway in Alcohol Induced Hepatic Damage. International Immunopharmacology, 69, 109-117.
https://doi.org/10.1016/j.intimp.2019.01.020
[82]  Zhu, J., Li, G., Zhou, J., Xu, Z. and Xu, J. (2022) Cytoprotective Effects and Antioxidant Activities of Acteoside and Various Extracts of Clerodendrum cyrtophyllum Turcz Leaves against T-Bhp Induced Oxidative Damage. Scientific Reports, 12, Article No. 12630.
https://doi.org/10.1038/s41598-022-17038-w
[83]  Chen, C., Tung, H., Tseng, Y., Huang, J., Shi, L. and Ye, Y. (2022) Verbascoside and Isoverbascoside Ameliorate Transforming Growth Factor β1-Induced Collagen Expression by Lung Fibroblasts through Smad/non-Smad Signaling Pathways. Life Sciences, 308, Article ID: 120950.
https://doi.org/10.1016/j.lfs.2022.120950
[84]  Guo, J., Liu, Q., Zhu, F., Li, M., Li, J., Guo, L., et al. (2022) Acteoside Attenuates Acute Lung Injury Following Administration of Cobra Venom Factor to Mice. Heliyon, 8, e11622.
https://doi.org/10.1016/j.heliyon.2022.e11622
[85]  Jing, W., Chunhua, M. and Shumin, W. (2015) Effects of Acteoside on Lipopolysaccharide-Induced Inflammation in Acute Lung Injury via Regulation of NF-κB Pathway in Vivo and in Vitro. Toxicology and Applied Pharmacology, 285, 128-135.
https://doi.org/10.1016/j.taap.2015.04.004
[86]  Ling, X., Zhou, J., Jin, T., Xu, W., Sun, X., Li, W., et al. (2022) Acteoside Attenuates RSV-Induced Lung Injury by Suppressing Necroptosis and Regulating Metabolism. Frontiers in Pharmacology, 13, Article 870928.
https://doi.org/10.3389/fphar.2022.870928
[87]  Zhang, S., Gong, F., Liu, J., Liu, T., Yang, J. and Hu, J. (2022) A Novel PHD2 Inhibitor Acteoside from Cistanche Tubulosa Induces Skeletal Muscle Mitophagy to Improve Cancer-Related Fatigue. Biomedicine & Pharmacotherapy, 150, Article ID: 113004.
https://doi.org/10.1016/j.biopha.2022.113004
[88]  Sciandra, F., Bottoni, P., De Leo, M., Braca, A., Brancaccio, A. and Bozzi, M. (2023) Verbascoside Elicits Its Beneficial Effects by Enhancing Mitochondrial Spare Respiratory Capacity and the Nrf2/HO-1 Mediated Antioxidant System in a Murine Skeletal Muscle Cell Line. International Journal of Molecular Sciences, 24, Article 15276.
https://doi.org/10.3390/ijms242015276
[89]  Zhu, M., Zhu, H., Tan, N., Wang, H., Chu, H. and Zhang, C. (2016) Central Anti-Fatigue Activity of Verbascoside. Neuroscience Letters, 616, 75-79.
https://doi.org/10.1016/j.neulet.2016.01.042
[90]  Guo, Z.L., Qian, Q.Y., Li, X.L., et al. (2023) Efficacy of Verbascoside, Echinacoside, Crenatoside on Alti-tude-Induced Fatigue in Rats and Possible Mechanism. Journal of Traditional Chinese Medicine, 43, 934-943.
[91]  Wilkinson, H.N. and Hardman, M.J. (2020) Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biology, 10, Article ID: 200223.
https://doi.org/10.1098/rsob.200223
[92]  de Moura Sperotto, N.D., Steffens, L., Veríssimo, R.M., Henn, J.G., Péres, V.F., Vianna, P., et al. (2018) Wound Healing and Anti-Inflammatory Activities Induced by a Plantago Australis Hydroethanolic Extract Standardized in Verbascoside. Journal of Ethnopharmacology, 225, 178-188.
https://doi.org/10.1016/j.jep.2018.07.012
[93]  Kanlayavattanakul, M., Khongkow, M. and Lourith, N. (2024) Wound Healing and Photoprotection Properties of Acanthus ebracteatus Vahl. Extracts Standardized in Verbascoside. Scientific Reports, 14, Article No. 1904.
https://doi.org/10.1038/s41598-024-52511-8
[94]  Si, N., Kanazawa, H., Okuyama, K., Imada, K., Wang, H., Yang, J., et al. (2018) Involvement of Catechols in Acteoside in the Activation of Promatrix Metalloproteinase-2 and Membrane Type-1-Matrix Metalloproteinase Expression via a Phosphatidylinositol-3-Kinase Pathway in Human Dermal Fibroblasts. Biological and Pharmaceutical Bulletin, 41, 1530-1536.
https://doi.org/10.1248/bpb.b18-00107
[95]  Kido, D., Mizutani, K., Takeda, K., Mikami, R., Matsuura, T., Iwasaki, K., et al. (2017) Impact of Diabetes on Gingival Wound Healing via Oxidative Stress. PLOS ONE, 12, e0189601.
https://doi.org/10.1371/journal.pone.0189601
[96]  Hsieh, P., Yu, C., Chu, P. and Hsieh, P. (2021) Verbascoside Protects Gingival Cells against High Glucose-Induced Oxidative Stress via PKC/HMGB1/RAGE/NFκB Pathway. Antioxidants, 10, Article 1445.
https://doi.org/10.3390/antiox10091445
[97]  Amin, B., Poureshagh, E. and Hosseinzadeh, H. (2015) The Effect of Verbascoside in Neuropathic Pain Induced by Chronic Constriction Injury in Rats. Phytotherapy Research, 30, 128-135.
https://doi.org/10.1002/ptr.5512
[98]  Hara, K., Haranishi, Y. and Terada, T. (2022) Verbascoside Administered Intrathecally Attenuates Hyperalgesia via Activating Mu‐Opioid Receptors in a Rat Chronic Constriction Injury Model. European Journal of Pain, 26, 1322-1332.
https://doi.org/10.1002/ejp.1952
[99]  Sun, Y., Ni, X., Cheng, S., Yu, X., Jin, X., Chen, L., et al. (2023) Acteoside Improves Adipocyte Browning by CDK6-Mediated mTORC1-TFEB Pathway. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1868, Article ID: 159364.
https://doi.org/10.1016/j.bbalip.2023.159364

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133