|
Pharmacy Information 2024
溃疡性结肠炎治疗药物研究进展
|
Abstract:
溃疡性结肠炎(ulcerative colitis, UC)是一种慢性炎症性肠道疾病,病变部位主要累及直肠和结肠。UC发病机制尚不明确,缺乏根治性药物。目前,临床中的常用药物主要包括氨基水杨酸类、糖皮质激素和免疫抑制剂等,但多存在一系列不良反应,导致临床使用受限。近年来,新型生物制剂和小分子抑制剂通过特异性作用于炎症反应中的关键分子在UC治疗中显示出良好的疗效和应用前景,包括抗TNF-α单克隆抗体、抗整合素α4β7抗体、抗IL-12/IL-23抗体、Janus激酶抑制剂和鞘氨醇-1-磷酸受体调节剂等。本文就UC的治疗药物作一综述,以促进其治疗策略的优化和进步。
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, mainly involving the lesion sites of rectum and colon. The UC pathogenesis is unclear, and lacks the radical drugs. At present, the commonly used drugs mainly consist of aminosalicylic acids, glucocorticoids and immunosuppressants, etc., but there are a series of adverse reactions, resulting in limited clinical use. In recent years, new biological agents and small molecule inhibitors have shown good efficacy and application prospects in the treatment of UC by specifically acting on key molecules in the inflammatory response, including anti-TNF-α monoclonal antibodies, anti-integrin α4β7 antibodies, anti-IL-12/IL-23 antibodies, Janus kinase inhibitors and sphingosine-1-phosphate receptor modulators. This article reviews the existing therapeutic drugs for UC, in order to promote the optimization and progress of its treatment strategy.
[1] | Du, L. and Ha, C. (2020) Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America, 49, 643-654. https://doi.org/10.1016/j.gtc.2020.07.005 |
[2] | Bai, J., Wang, Y., Li, F., Wu, Y., Chen, J., Li, M., et al. (2024) Research Advancements and Perspectives of Inflammatory Bowel Disease: A Comprehensive Review. Science Progress, 107, 1-37. https://doi.org/10.1177/00368504241253709 |
[3] | Kobayashi, T., Siegmund, B., Le Berre, C., Wei, S.C., Ferrante, M., Shen, B., et al. (2020) Ulcerative Colitis. Nature Reviews Disease Primers, 6, Article No. 74. https://doi.org/10.1038/s41572-020-0205-x |
[4] | Guo, M. and Wang, X. (2023) Pathological Mechanism and Targeted Drugs of Ulcerative Colitis: A Review. Medicine, 102, e35020. https://doi.org/10.1097/md.0000000000035020 |
[5] | 王少鑫, 浦江, 刘超群, 等. 炎症因子TNF-α、IL-6和IL-4在溃疡性结肠炎中的表达及临床意义[J]. 胃肠病学和肝病学杂志, 2015, 24(1): 104-106. |
[6] | Griffiths, O.R., Landon, J., Coxon, R.E., Morris, K., James, P. and Adams, R. (2020) Inflammatory Bowel Disease and Targeted Oral Anti-TNFα therapy. Advances in Protein Chemistry and Structural Biology, 119, 157-198. https://doi.org/10.1016/bs.apcsb.2019.08.009 |
[7] | Vulliemoz, M., Brand, S., Juillerat, P., Mottet, C., Ben-Horin, S. and Michetti, P. (2020) TNF-Alpha Blockers in Inflammatory Bowel Diseases: Practical Recommendations and a User’s Guide: An Update. Digestion, 101, 16-26. https://doi.org/10.1159/000506898 |
[8] | Lamb, C.A., O’Byrne, S., Keir, M.E. and Butcher, E.C. (2018) Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 12, S653-S668. https://doi.org/10.1093/ecco-jcc/jjy060 |
[9] | Gamliel, A., Werner, L., Pinsker, M., Salamon, N., Weiss, B. and Shouval, D.S. (2020) Circulating α4β7+ Memory T Cells in Pediatric IBD Patients Express a Polyclonal T Cell Receptor Repertoire. Clinical and Experimental Gastroenterology, 13, 439-447. https://doi.org/10.2147/ceg.s271565 |
[10] | Cluny, N.L., Nyuyki, K.D., Almishri, W., Griffin, L., Lee, B.H., Hirota, S.A., et al. (2022) Recruitment of α4β7 Monocytes and Neutrophils to the Brain in Experimental Colitis Is Associated with Elevated Cytokines and Anxiety-Like Behavior. Journal of Neuroinflammation, 19, Article No. 73. https://doi.org/10.1186/s12974-022-02431-z |
[11] | Zhang, H., Zheng, Y., Pan, Y., Lin, C., Wang, S., Yan, Z., et al. (2020) A Mutation That Blocks Integrin α4β7 Activation Prevents Adaptive Immune-Mediated Colitis without Increasing Susceptibility to Innate Colitis. BMC Biology, 18, Article No. 73. https://doi.org/10.1186/s12915-020-00784-6 |
[12] | Yan, J., Ding, X., Wu, J., Liu, A., Fang, L. and Xu, Y. (2024) Real-Life Effectiveness and Safety of Vedolizumab in Moderate-to-Severe Ulcerative Colitis: A Single-Center Experience in Northern China. Medicine, 103, e38759. https://doi.org/10.1097/md.0000000000038759 |
[13] | Dhillon, S. (2022) Carotegrast Methyl: First Approval. Drugs, 82, 1011-1016. https://doi.org/10.1007/s40265-022-01732-0 |
[14] | Verstockt, B., Salas, A., Sands, B.E., Abraham, C., Leibovitzh, H., Neurath, M.F., et al. (2023) IL-12 and IL-23 Pathway Inhibition in Inflammatory Bowel Disease. Nature Reviews Gastroenterology & Hepatology, 20, 433-446. https://doi.org/10.1038/s41575-023-00768-1 |
[15] | Jefremow, A. and Neurath, M.F. (2020) All Are Equal, Some Are More Equal: Targeting IL 12 and 23 in IBD—A Clinical Perspective. ImmunoTargets and Therapy, 9, 289-297. https://doi.org/10.2147/itt.s282466 |
[16] | Zhang, W., Zhong, G., Ren, X. and Li, M. (2024) Research Progress of Ustekinumab in the Treatment of Inflammatory Bowel Disease. Frontiers in Immunology, 15, Article 1322054. https://doi.org/10.3389/fimmu.2024.1322054 |
[17] | Scheibe, K., Backert, I., Wirtz, S., Hueber, A., Schett, G., Vieth, M., et al. (2016) IL-36R Signalling Activates Intestinal Epithelial Cells and Fibroblasts and Promotes Mucosal Healing in vivo. Gut, 66, 823-838. https://doi.org/10.1136/gutjnl-2015-310374 |
[18] | Russell, S.E., Horan, R.M., Stefanska, A.M., Carey, A., Leon, G., Aguilera, M., et al. (2016) Il-36α Expression Is Elevated in Ulcerative Colitis and Promotes Colonic Inflammation. Mucosal Immunology, 9, 1193-1204. https://doi.org/10.1038/mi.2015.134 |
[19] | Harusato, A., Abo, H., Ngo, V.L., Yi, S.W., Mitsutake, K., Osuka, S., et al. (2017) IL-36γ Signaling Controls the Induced Regulatory T Cell-Th9 Cell Balance via NFκB Activation and STAT Transcription Factors. Mucosal Immunology, 10, 1455-1467. https://doi.org/10.1038/mi.2017.21 |
[20] | Zhu, J., Xu, Y., Li, Z., Liu, S., Fu, W. and Wei, Y. (2022) Interleukin-36β Exacerbates DSS-Induce Acute Colitis via Inhibiting Foxp3+ Regulatory T Cell Response and Increasing Th2 Cell Response. International Immunopharmacology, 108, Article 108762. https://doi.org/10.1016/j.intimp.2022.108762 |
[21] | Philips, R.L., Wang, Y., Cheon, H., Kanno, Y., Gadina, M., Sartorelli, V., et al. (2022) The JAK-STAT Pathway at 30: Much Learned, Much More to Do. Cell, 185, 3857-3876. https://doi.org/10.1016/j.cell.2022.09.023 |
[22] | Salas, A., Hernandez-Rocha, C., Duijvestein, M., Faubion, W., McGovern, D., Vermeire, S., et al. (2020) JAK-STAT Pathway Targeting for the Treatment of Inflammatory Bowel Disease. Nature Reviews Gastroenterology & Hepatology, 17, 323-337. https://doi.org/10.1038/s41575-020-0273-0 |
[23] | Li, Y., Yang, X., Han, J., Bai, B., Li, Y., Shang, C., et al. (2023) Peimisine Ameliorates DSS-Induced Colitis by Suppressing Jak-Stat Activation and Alleviating Gut Microbiota Dysbiosis in Mice. Journal of Pharmacy and Pharmacology, 76, 545-558. https://doi.org/10.1093/jpp/rgad091 |
[24] | Li, J., Huang, Y., Zhang, Y., Liu, P., Liu, M., Zhang, M., et al. (2023) S1P/S1PR Signaling Pathway Advancements in Autoimmune Diseases. Biomolecules and Biomedicine, 23, 922-935. |
[25] | Sun, G., Wang, B., Wu, X., Cheng, J., Ye, J., Wang, C., et al. (2024) How Do Sphingosine-1-Phosphate Affect Immune Cells to Resolve Inflammation? Frontiers in Immunology, 15, Article 1362459. https://doi.org/10.3389/fimmu.2024.1362459 |
[26] | Zou, F., Wang, S., Xu, M., Wu, Z. and Deng, F. (2023) The Role of Sphingosine-1-Phosphate in the Gut Mucosal Microenvironment and Inflammatory Bowel Diseases. Frontiers in Physiology, 14, Article 1235656. https://doi.org/10.3389/fphys.2023.1235656 |
[27] | Iwatani, S., Iijima, H., Otake, Y., Amano, T., Tani, M., Yoshihara, T., et al. (2020) Novel Mass Spectrometry‐Based Comprehensive Lipidomic Analysis of Plasma from Patients with Inflammatory Bowel Disease. Journal of Gastroenterology and Hepatology, 35, 1355-1364. https://doi.org/10.1111/jgh.15067 |
[28] | Snider, A.J., Kawamori, T., Bradshaw, S.G., Orr, K.A., Gilkeson, G.S., Hannun, Y.A., et al. (2008) A Role for Sphingosine Kinase 1 in Dextran Sulfate Sodium‐Induced Colitis. The FASEB Journal, 23, 143-152. https://doi.org/10.1096/fj.08-118109 |
[29] | Pulkoski-Gross, M.J., Uys, J.D., Orr-Gandy, K.A., Coant, N., Bialkowska, A.B., Szulc, Z.M., et al. (2017) Novel Sphingosine Kinase-1 Inhibitor, LCL351, Reduces Immune Responses in Murine DSS-Induced Colitis. Prostaglandins & Other Lipid Mediators, 130, 47-56. https://doi.org/10.1016/j.prostaglandins.2017.03.006 |
[30] | Montrose, D.C., Scherl, E.J., Bosworth, B.P., Zhou, X.K., Jung, B., Dannenberg, A.J., et al. (2013) S1P1 Localizes to the Colonic Vasculature in Ulcerative Colitis and Maintains Blood Vessel Integrity. Journal of Lipid Research, 54, 843-851. https://doi.org/10.1194/jlr.m034108 |
[31] | Paik, J. (2022) Ozanimod: A Review in Ulcerative Colitis. Drugs, 82, 1303-1313. https://doi.org/10.1007/s40265-022-01762-8 |
[32] | Shirley, M. (2024) Etrasimod: First Approval. Drugs, 84, 247-254. https://doi.org/10.1007/s40265-024-01997-7 |
[33] | Bonati, L., Motta, S. and Callea, L. (2024) The AhR Signaling Mechanism: A Structural Point of View. Journal of Molecular Biology, 436, Article 168296. https://doi.org/10.1016/j.jmb.2023.168296 |
[34] | Xu, L., Lin, L., Xie, N., Chen, W., Nong, W. and Li, R. (2024) Role of Aryl Hydrocarbon Receptors in Infection and Inflammation. Frontiers in Immunology, 15, Article 1367734. https://doi.org/10.3389/fimmu.2024.1367734 |
[35] | Sládeková, L., Mani, S. and Dvořák, Z. (2023) Ligands and Agonists of the Aryl Hydrocarbon Receptor AhR: Facts and Myths. Biochemical Pharmacology, 213, Article 115626. https://doi.org/10.1016/j.bcp.2023.115626 |
[36] | Pernomian, L., Duarte-Silva, M. and de Barros Cardoso, C.R. (2020) The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clinical Reviews in Allergy & Immunology, 59, 382-390. https://doi.org/10.1007/s12016-020-08789-3 |
[37] | Marafini, I., Monteleone, I., Laudisi, F. and Monteleone, G. (2024) Aryl Hydrocarbon Receptor Signalling in the Control of Gut Inflammation. International Journal of Molecular Sciences, 25, Article 4527. https://doi.org/10.3390/ijms25084527 |
[38] | Hontecillas, R., Horne, W.T., Climent, M., Guri, A.J., Evans, C., Zhang, Y., et al. (2011) Immunoregulatory Mechanisms of Macrophage PPAR-γ in Mice with Experimental Inflammatory Bowel Disease. Mucosal Immunology, 4, 304-313. https://doi.org/10.1038/mi.2010.75 |
[39] | Dubuquoy, L., Rousseaux, C., Thuru, X., Peyrin-Biroulet, L., Romano, O., Chavatte, P., et al. (2006) PPARγ as a New Therapeutic Target in Inflammatory Bowel Diseases. Gut, 55, 1341-1349. https://doi.org/10.1136/gut.2006.093484 |
[40] | Picardo, S. and Panaccione, R. (2019) Anti-MADCAM Therapy for Ulcerative Colitis. Expert Opinion on Biological Therapy, 20, 437-442. https://doi.org/10.1080/14712598.2020.1691520 |
[41] | Reinisch, W., Hung, K., Hassan-Zahraee, M. and Cataldi, F. (2018) Targeting Endothelial Ligands: ICAM-1/Alicaforsen, MAdCAM-1. Journal of Crohn’s and Colitis, 12, S669-S677. https://doi.org/10.1093/ecco-jcc/jjy059 |
[42] | Greuter, T., Vavricka, S.R., Biedermann, L., Pilz, J., Borovicka, J., Seibold, F., et al. (2017) Alicaforsen, an Antisense Inhibitor of Intercellular Adhesion Molecule-1, in the Treatment for Left-Sided Ulcerative Colitis and Ulcerative Proctitis. Digestive Diseases, 36, 123-129. https://doi.org/10.1159/000484979 |
[43] | Garcia-Carbonell, R., Yao, S., Das, S. and Guma, M. (2019) Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Frontiers in Immunology, 10, Article 1094. https://doi.org/10.3389/fimmu.2019.01094 |
[44] | Xu, L., Zhang, Y., Xue, X., Liu, J., Li, Z., Yang, G., et al. (2020) A Phase I Trial of Berberine in Chinese with Ulcerative Colitis. Cancer Prevention Research, 13, 117-126. https://doi.org/10.1158/1940-6207.capr-19-0258 |
[45] | Xiong, K., Deng, J., Yue, T., Hu, W., Zeng, X., Yang, T., et al. (2023) Berberine Promotes M2 Macrophage Polarisation through the IL-4-STAT6 Signalling Pathway in Ulcerative Colitis Treatment. Heliyon, 9, e14176. https://doi.org/10.1016/j.heliyon.2023.e14176 |
[46] | Zhang, J., Lin, B., Zhang, Y., Hu, X., Liu, T., Liu, E., et al. (2024) Baitouweng Decoction Alleviates Ulcerative Colitis by Regulating Tryptophan Metabolism through DOPA Decarboxylase Promotion. Frontiers in Pharmacology, 15, Article 1423307. https://doi.org/10.3389/fphar.2024.1423307 |
[47] | 蒋晓娟, 王亚东, 孙娟, 等. 白头翁汤正丁醇提取物通过激活BMP信号通路治疗溃疡性结肠炎的作用机制研究[J]. 中国中药杂志, 2024, 49(7): 1762-1773. |
[48] | Ding, P., Liu, J., Li, Q., Lu, Q., Li, J., Shi, R., et al. (2021) Investigation of the Active Ingredients and Mechanism of Hudi Enteric-Coated Capsules in DSS-Induced Ulcerative Colitis Mice Based on Network Pharmacology and Experimental Verification. Drug Design, Development and Therapy, 15, 4259-4273. https://doi.org/10.2147/dddt.s326029 |