|
Finance 2024
基于LSTM-AR模型的光伏指数保险欺诈检测方法研究
|
Abstract:
光伏指数保险是一种基于太阳辐射总量的天气指数保险产品,旨在为光伏电站提供发电量不足的风险保障。然而,光伏指数保险中存在着因缺乏客观数据与评价标准而导致的保险欺诈问题。本文针对这一问题,提出了一种基于深度学习的模型,结合LSTM、注意力机制和残差连接,该模型使用太阳辐射量对光电企业发电量进行预测。为验证模型的有效性,本文使用2019年新疆光电光伏数据集进行测试并与传统的最小二乘法的回归预测进行比较。测试结果表明,本文所提出的模型可以有效使用太阳辐射量对光电企业发电量进行预测,进而帮助保险企业针对光伏企业的发电量有关的保险欺诈行为进行识别,为光伏保险业务的规范化和发展提供了一种有效的技术手段。
Photovoltaic (PV) index insurance is a weather index insurance product based on the total amount of solar radiation, designed to provide risk protection against insufficient power generation for PV power plants. However, PV index insurance faces issues of insurance fraud due to the lack of objective data and evaluation standards. To address this problem, this paper proposes a deep learning-based model that combines LSTM, attention mechanism, and residual connections. This model uses solar radiation data to predict the power generation of photovoltaic enterprises. To validate the effectiveness of the model, the 2019 Xinjiang photovoltaic dataset was used for testing and compared with traditional least squares regression predictions. The test results show that the proposed model can effectively use solar radiation data to predict the power generation of photovoltaic enterprises, thereby helping insurance companies identify fraudulent activities related to power generation in PV enterprises. This provides an effective technical means for the standardization and development of PV insurance business.
[1] | 李嘉. 论光伏发电天气指数保险的可行性[J]. 保险职业学院学报, 2017, 31(6): 30-33. |
[2] | 余永清. 光伏发电企业面临的财务风险探讨[J]. 产业创新研究, 2022(2): 80-82. |
[3] | 黄梦哲. 光伏发电企业融资现状及创新路径[J]. 商业会计, 2023(3): 114-116. |
[4] | 李源. 浅谈国内绿色能源企业推广天气指数保险的现存问题和重要意义[J]. 科技与金融, 2023(5): 83-88. |
[5] | 刘金霞, 谢美玲. 关于光伏保险发展的问题分析与对策建议[J]. 黑龙江金融, 2022(7): 70-72. |
[6] | Viaene, S., Dedene, G. and Derrig, R. (2005) Auto Claim Fraud Detection Using Bayesian Learning Neural Networks. Expert Systems with Applications, 29, 653-666. https://doi.org/10.1016/j.eswa.2005.04.030 |
[7] | Hanafizadeh, P. and Paydar, N.R. (2013) A Data Mining Model for Risk Assessment and Customer Segmentation in the Insurance Industry. International Journal of Strategic Decision Sciences, 4, 52-78. https://doi.org/10.4018/jsds.2013010104 |
[8] | Li, Y., Yan, C., Liu, W. and Li, M. (2018) A Principle Component Analysis-Based Random Forest with the Potential Nearest Neighbor Method for Automobile Insurance Fraud Identification. Applied Soft Computing, 70, 1000-1009. https://doi.org/10.1016/j.asoc.2017.07.027 |
[9] | He, X. and Chua, T. (2017) Neural Factorization Machines for Sparse Predictive Analytics. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, 7-11 August 2017, 355-364. https://doi.org/10.1145/3077136.3080777 |
[10] | Majhi, S.K. (2019) Fuzzy Clustering Algorithm Based on Modified Whale Optimization Algorithm for Automobile Insurance Fraud Detection. Evolutionary Intelligence, 14, 35-46. https://doi.org/10.1007/s12065-019-00260-3 |
[11] | 赵桂芹, 吴洪. 汽车保险市场中存在道德风险吗?——来自动态续保数据的分析[J]. 金融研究, 2010(6): 175-188. |
[12] | 汤俊, 莫依雯. 基于数据挖掘技术的车险反欺诈系统构建[J]. 上海保险, 2013(11): 39-42. |
[13] | 王海巍. 我国险企运营中道德风险甄别问题研究——以大数据Hadoop聚类分析技术为视角[J]. 保险研究, 2016(2): 59-67. |
[14] | 闫春, 李亚琪, 孙海棠. 基于蚁群算法优化随机森林模型的汽车保险欺诈识别研究[J]. 保险研究, 2017(6): 114-127. |
[15] | 喻炜, 冯根福, 张文珺. 机动车辆保险欺诈检测系统及团伙识别研究[J]. 保险研究, 2017(2): 63-73. |
[16] | 徐徐, 王正祥, 王牧群. 基于深度学习技术的机动车辆保险欺诈识别模型与实证研究[J]. 上海保险, 2019(8): 53-58. |
[17] | 沈燕鸿. 绿色保险发展的国内外实践[J]. 金融纵横, 2023(1): 53-59. |
[18] | Goodfellow, I., Bengio, Y., Courville, A., et al. (2016) Deep Learning. MIT Press, 326-366. |
[19] | Li, L., Ota, K. and Dong, M. (2017) Everything Is Image: CNN-Based Short-Term Electrical Load Forecasting for Smart Grid. 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC), Exeter, 21-23 June 2017, 344-351. https://doi.org/10.1109/ispan-fcst-iscc.2017.78 |
[20] | Goodfellow, I., Bengio, Y., Courville, A., et al. (2016) Deep Learning. MIT Press, 363-405. |
[21] | Schuster, M. and Paliwal, K.K. (1997) Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal Processing, 45, 2673-2681. https://doi.org/10.1109/78.650093 |
[22] | Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 |
[23] | Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., et al. (2014) Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, 25-29 October 2014, 1724-1734. https://doi.org/10.3115/v1/d14-1179 |
[24] | Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 6000-6010. |
[25] | Li, S., Jin, X., Xuan, Y., et al. (2019) Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, 8-14 December 2019, 5243-5253. |