Mining in tailings dams has emerged as a strategic alternative for mining companies for both economic and environmental reasons. Owing to technological limitations in recent decades, many of these dams have high metal contents, emphasizing the need to evaluate the quality of these residues, especially considering the technological advancements in current concentration plants. An economic viability analysis associated with reusing these materials is crucial. From an environmental point of view, improving mining techniques for dams by considering both safety and feasibility is an advantageous option in decommissioning processes and alignment in the circular economy. In this context, representing these tailings in terms of grade quality and granulometry, as well as the associated contaminants, is essential. Geostatistical estimation and simulation methods are valuable tools for modeling tailings bodies, but they require a reliable sampling campaign to ensure acceptably low errors. From an operational perspective, tailings recovery can be conducted via dry methods, such as mechanical excavation, or hydraulic methods, such as dredging or hydraulic blasting. Dredging is a commonly used method, and cutter suction dredgers, which require pumping to transport fragmented material, are the most commonly used tools. In this paper, some practical applications of geostatistical methods for resource quantification in tailings dams will be discussed. Additionally, the main mining methods for tailings recovery in dams will be presented. Emphasis will be given to the dredging method, along with the key analysis parameters for sizing dredgers, pumps, and pipelines.
References
[1]
Alves, H. O. (2015). Estudocomparativo de duas técnicas de lavraembarragem de rejeito sob o ponto de vista geotécnico. Master’s Thesis, Universidade Federal de Minas Gerais.
[2]
Blannin, R., Frenzel, M., Tolosana-Delgado, R., Büttner, P., & Gutzmer, J. (2023). 3D Geostatistical Modelling of a Tailings Storage Facility: Resource Potential and Environmental Implications. Ore Geology Reviews, 154, Article ID: 105337. https://doi.org/10.1016/j.oregeorev.2023.105337
[3]
Bray, R. N., Bates, A. D., & Land, J. M. (1997). Dredging: A Handbook for Engineers (2nd ed.). Arnold.
[4]
Chaves, A. P. (2002). Teoria e Prática do Tratamento de Minérios (2nd ed.). Signus Editora.
[5]
Deutsch, J. L., Szymanski, J., & Deutsch, C. V. (2014). Checks and Measures of Performance for Kriging Estimates. Journal of the Southern African Institute of Mining and Metallurgy, 114, 223-230.
[6]
Ellicott Dredges (2014). Reprocessing of Mining Tailings with Ellicott 370 Dragon® Dredge. https://www.dredge.com/2014/09/reprocessing-of-mining-tailings-with-ellicott-dredges/
[7]
Engels, J., Schönhardt, M., Witt, K. J., Benkovics, I., Berta, Z., Csövári, M. et al. (2004). Tailings Management Facilities—Intervention Actions for Risk Reduction. Report of Workpackage 3 of the RTD Project Sustainable Improvement in Safety of Tailings Facilities (TAILSAFE). European Commission.
[8]
Espósito, T. J. (2000). Metodologiaprobabilística e observacionaloplicada a barragens de rejeitoconstruídasporaterrohidráulico. Ph.D. Thesis, Universidade de Brasília.
[9]
Ferrante, F. (2014). Estudo de Viabilidade para Recuperação de Minério de Ferro emRejeitosContidosemBarragens. Master’s Thesis, Universidade Federal de Ouro Preto.
[10]
Fitton, T. G., & Neumann, W. J. (2015). Dredging of an Active Thickened Tailings Storage Facility at the Ernest Henry Mine. In R. Jewell, & A. B. Fourie (Eds.), Paste 2015: Proceedings of the 18th International Seminar on Paste and Thickened Tailings (pp. 239-246). Australian Centre for Geomechanics. https://doi.org/10.36487/ACG_rep/1504_16_Fitton
[11]
Franks, D. M., Stringer, M., Torres-Cruz, L. A., Baker, E., Valenta, R., Thygesen, K. et al. (2021). Tailings Facility Disclosures Reveal Stability Risks. Scientific Reports, 11, Article No. 5353. https://doi.org/10.1038/s41598-021-84897-0
[12]
Garbarino, E., Orveillon, G., Saveyn, H., Barthe, P., & Eder, P. (2018). Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industries, in Accordance with Directive 2006/21/EC, EUR 28963 EN. Publications Office of the European Union
[13]
Gomes, M. A. (2009). Caracterizaçãotecnológica no aproveitamento do rejeito de minério de ferro. Master’s Thesis, Universidade Federal de Ouro Preto.
[14]
Granato, F. C. (2005). SubsídiosTécnicos para o Estabelecimento de um Plano de Gerenciamento Ambiental Integrado do Processo de Dragagem do Porto de Rio Grande—RS. Master’s Thesis, Universidade Federal de Rio Grande.
[15]
Hall Water & Talings (2024). Ranger Mine Tailings Dredging. https://hallwaterandtailings.com.au/project/ranger-mine-tailings-dredging/
IHC Mining (2024). Towards Zero CO2 Emissions with Our All-Electric Dredgers. https://www.royalihc.com/mining/cases/towards-zero-co2-emissions-our-all-electric-dredgers
[18]
Karacan, C. Ö., Erten, O., & Martín-Fernández, J. A. (2023). Assessment of Resource Potential from Mine Tailings Using Geostatistical Modeling for Compositions: A Methodology and Application to Katherine Mine Site, Arizona, USA. Journal of Geochemical Exploration, 245, Article ID: 107142. https://doi.org/10.1016/j.gexplo.2022.107142
Lottermoser, B. G. (2010). Mine Wastes: Characterization, Treatment and Environmental Impacts (3rd ed.). Springer.
[21]
Løvik, A.N., Hagelüken, C., & Wäger, P. (2018). Improving Supply Security of Critical Metals: Current Developments and Research in the EU. Sustainable Materials and Technologies, 15, 9-18. https://doi.org/10.1016/j.susmat.2018.01.003
[22]
Muir, A., Mitchell, J., Flatman, S. R., & Sabbagha, C. (2005). A Practical Guide to Retreatment of Gold Processing Residues. Minerals Engineering, 18, 811-824. https://doi.org/10.1016/j.mineng.2005.01.027
Nikonow, W., Rammlmair, D., & Furche, M, (2019). A Multidisciplinary Approach Considering Geochemical Reorganization and Internal Structure of Tailings Impoundments for Metal Exploration. Applied Geochemistry, 104, 51-59. https://doi.org/10.1016/j.apgeochem.2019.03.014
[25]
Nwaila, G. T., Ghorbani, Y., Zhang, S. E., Frimmel, H. E., Tolmay, L. C. K., Rose, D. H. et al. (2021). Valorisation of Mine Waste—Part I: Characteristics of, and Sampling Methodology for, Consolidated Mineralised Tailings by Using Witwatersrand Gold Mines (South Africa) as an Example. Journal of Environmental Management, 295, Article ID: 113013. https://doi.org/10.1016/j.jenvman.2021.113013
[26]
Parviainen, A., Soto, F., & Caraballo, M. A. (2020). Revalorization of Haveri Au-Cu Mine Tailings (SW Finland) for Potential Reprocessing. Journal of Geochemical Exploration, 218, Article ID: 106614. https://doi.org/10.1016/j.gexplo.2020.106614
[27]
Rezende, V. A. (2013). Estudo do comportamento de barragem de rejeitoarenosoalteadapormontante. Master’s Thesis, Universidade Federal de Ouro Preto.
Santos, A. G. (2004). Influência do teor de ferro nacondutividadehidráulicasaturada de um rejeito de minério de ferro. Master’s Thesis, Universidade Federal de Ouro Preto.
[30]
Sarker, S. K., Haque, N., Bruckard, W., Bhuiyan, M., & Pramanik, B. K. (2022). Development of a Geospatial Database of Tailing Storage Facilities in Australia Using Satellite Images. Chemosphere, 303, Article ID: 135139. https://doi.org/10.1016/j.chemosphere.2022.135139
[31]
Soto, F., Navarro, F., Díaz, G., Emery, X., Parviainen, A., & Egaña, A. (2022). Transitive Kriging for Modeling Tailings Deposits: A Case Study in Southwest Finland. Journal of Cleaner Production, 374, Article ID: 133857. https://doi.org/10.1016/j.jclepro.2022.133857
[32]
Sousa, G. M. (2020). Proposta de metodologia para lavra de barragens de rejeitos de ferro construídas pela técnica de aterrohidráulico. Ph.D. Thesis, Universidade Federal de Ouro Preto.
[33]
Tripodi, E. E. M., Rueda, J. A. G., Céspedes, C. A., Vega, J. D., & Gómez, C. C. (2019). Characterization and Geostatistical Modelling of Contaminants and Added Value Metals from an Abandoned Cu-Au Tailing Dam in Taltal (Chile). Journal of South American Earth Sciences, 93, 183-202. https://doi.org/10.1016/j.jsames.2019.05.001
[34]
Tunsu, C., Menard, Y., Ekberg, C., & Petranik, M. (2019). Recovery of Critical Materials from Mine Tailings: A Comparative Study of the Solvent Extraction of Rare Earths Using Acidic, Solvating and Mixed Extractant Systems. Journal of Cleaner Production, 218, 425-437. https://doi.org/10.1016/j.jclepro.2019.01.312
[35]
Van Rhee, C. (2022). Numerical Modelling of the flow and settling in a Trailing Suction Hopper Dredge. In Proceedings of 15th International Conference on Hydrotransport. BHR Group Ltd.
[36]
Vick, S. G. (1990). Planning, Design, and Analysis of Tailings Dams. BiTech Publishers Ltd.
[37]
Vlasblom, W. J. (2016). Designing Dredging Equipment. Delft University of Technology.
VLMS (2024b). 800 mm (32”) Cutter Suction Dredger. https://www.vlmaritime.com/product/a0410-cutter-suction-dredger/
[40]
Wang, B., Fan, S. D., Jiang, P., Zhu, H.-H., Xiong, T., Wei, W. et al. (2020). A Novel Method with Stacking Learning of Data-Driven Soft Sensors for Mud Concentration in a Cutter Suction Dredger. Sensors, 20, Article 6075. https://doi.org/10.3390/s20216075
[41]
Wates, J. A., Jardine, P., Robinson, B. C. S., & Marais, M. (2010). Yesterday’s Tailings Are Tomorrow’s Resource—Rehabilitation of Stilfontein Gold Mine for Profit. In Proceedings of Sustainable Mining 2010 (pp. 114-127). The Australasian Institute of Mining and Metallurgy (AusIMM).
[42]
Weir (2002). Slurry Pumping Manual: A Technical Application Guide for user of Centrifugal Slurry Pumps and Slurry Pumping Systems. Warman International LTD.
[43]
Wilson, R., Toro, N., Naranjo, O., Emery, X., & Navarra, A. (2021). Integration of Geostatistical Modeling into Discrete Event Simulation for Development of Tailings Dam Retreatment Applications. Minerals Engineering, 164, Article ID: 106814. https://doi.org/10.1016/j.mineng.2021.106814