|
一类Schr?dinger-Kirchhoff-Poisson方程的正解
|
Abstract:
运用变分方法讨论一类Schr?dinger-Kirchhoff-Poisson方程正解的存在性。在适当假设下,通过运用一些技巧证明了能量泛函满足Palais-Smale条件。最后运用山路引理,Ekeland变分原理和强极大值原理得到了主要结论。
The existence of positive solutions for a class of Schr?dinger-Kirchhoff-Poisson equation is discussed by using variational methods. Under appropriate assumption, it is proved that the energy functional satisfies the Palais-Smale condition by using some techniques. Finally, the main conclusions are obtained by using mountain pass lemma, Ekeland variational principle and strong maximum principle.
[1] | Chen, J. (2014) Multiple Positive Solutions to a Class of Kirchhoff Equation on with Indefinite Nonlinearity. Nonlinear Analysis: Theory, Methods & Applications, 96, 134-145. https://doi.org/10.1016/j.na.2013.11.012 |
[2] | Niu, R. and Wang, H. (2023) Solutions for Planar Kirchhoff-Schrödinger-Poisson Systems with General Nonlinearities. Boundary Value Problems, 2023, Article No. 66. https://doi.org/10.1186/s13661-023-01756-9 |
[3] | Che, G. and Chen, H. (2020) Existence and Multiplicity of Positive Solutions for Kirchhoff-Schrödinger-Poisson System with Critical Growth. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114, Article No. 78. https://doi.org/10.1007/s13398-020-00809-3 |
[4] | Soluki, M., Rasouli, S.H. and Afrouzi, G.A. (2023) Solutions of a Schrödinger-Kirchhoff-Poisson System with Concave-Convex Nonlinearities. Journal of Elliptic and Parabolic Equations, 9, 1233-1244. https://doi.org/10.1007/s41808-023-00243-7 |
[5] | Zhang, M. and Qian, A. (2021) Existence and Asymptotic Behavior of Ground State Sign-Changing Solutions for a Nonlinear Schrödinger-Poisson-Kirchhoff System in R3. Rocky Mountain Journal of Mathematics, 51, 1879-1897. https://doi.org/10.1216/rmj.2021.51.1879 |
[6] | Yang, J., Guo, W., Li, W. and Zhang, J. (2022) Existence of Normalized Solutions for a Class of Kirchhoff-Schrödinger-Poisson Equations in R3. Annals of Functional Analysis, 14, Article No. 13. https://doi.org/10.1007/s43034-022-00240-2 |
[7] | Wang, Z., Zhang, X. and Chen, J. (2015) Standing Waves for Nonlinear Schrödinger-Poisson Equation with High Frequency. Topological Methods in Nonlinear Analysis, 45, 601-614. https://doi.org/10.12775/tmna.2015.028 |
[8] | Seok, J. (2013) On Nonlinear Schrödinger-Poisson Equations with General Potentials. Journal of Mathematical Analysis and Applications, 401, 672-681. https://doi.org/10.1016/j.jmaa.2012.12.054 |
[9] | Sun, J. and Ma, S. (2016) Ground State Solutions for Some Schrödinger-Poisson Systems with Periodic Potentials. Journal of Differential Equations, 260, 2119-2149. https://doi.org/10.1016/j.jde.2015.09.057 |
[10] | Zhou, J. and Wu, Y. (2023) Existence and Concentration of Solutions for Nonlinear Schrödinger-Poisson System with Steep Potential Well. https://doi.org/10.21203/rs.3.rs-3141933/v1 |
[11] | Ambrosetti, A. and Rabinowitz, P.H. (1973) Dual Variational Methods in Critical Point Theory and Applications. Journal of Functional Analysis, 14, 349-381. https://doi.org/10.1016/0022-1236(73)90051-7 |
[12] | 张倩. 关于两类非线性椭圆型方程组基态解和变号解的研究[D]: [博士学位论文]. 福州: 福建师范大学, 2022. |
[13] | Alama, S. and Tarantello, G. (1993) On Semilinear Elliptic Equations with Indefinite Nonlinearities. Calculus of Variations and Partial Differential Equations, 1, 439-475. https://doi.org/10.1007/bf01206962 |
[14] | Alama, S. and Tarantello, G. (1996) Elliptic Problems with Nonlinearities Indefinite in Sign. Journal of Functional Analysis, 141, 159-215. https://doi.org/10.1006/jfan.1996.0125 |
[15] | Aubin, J. and Ekeland, I. (1984) Applied Nonlinear Analysis. Wiley. |