全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有限大八次准晶薄板刚性夹杂问题的应力分析
Stress Analysis of Plane Problems in Two-Dimensional Octagonal Quasicrystals Containing an Elliptic Rigid Inclusion

DOI: 10.12677/aam.2024.139414, PP. 4342-4352

Keywords: Stroh方法,刚性夹杂,八次对称二维准晶,孔边应力,复边界元法
Stroh Formalism
, Rigid Inclusion, Two-Dimensional Octagonal Quasicrystals, Stress on the Boundary, Complex Boundary Element Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

准晶因其性能良好而广泛应用于发动机等设备的表面涂层中。由于准晶材料非常脆,因而对准晶部件应力集中处的应力场分析已引起广泛关注。本文利用复边界元法研究八次对称二维准晶中的椭圆形刚性夹杂问题。首先,通过推广的Stroh公式推导出在集中点力作用下,含椭圆刚性夹杂八次对称二维准晶平面弹性问题的Green函数。其次,基于不计体力的平衡方程和椭圆形刚性夹杂问题所对应的边界条件,构建边界积分方程,最后,通过Guass数值积分公式离散该边界积分方程并求解,分别获得了声子场和相位子场的孔边应力值。数值实例讨论了椭圆形刚性夹杂所引起的孔边应力变化,与含孔洞问题相比,内部夹杂的存在使基体孔边应力集中处的应力值减弱。
Quasicrystals are widely used in surface coatings for devices such as engines due to their excellent properties. Because quasicrystal materials are very brittle, the analysis of the stress field at stress concentration areas of quasicrystal components has attracted widespread attention. The plane elastic problem of octagonal symmetric two-dimensional quasicrystals containing an elliptical rigid inclusion is considered by using the complex boundary element method. First, Green’s functions are obtained utilizing the extended Stroh formalism under concentrated force. Second, based on the equilibrium equation satisfying body force free and the boundary conditions corresponding to the elliptical rigid inclusion problem, a boundary integral equation is constructed, which is discretized and solved using the Guass’s formula of numerical integration. The stresses of the phonon field and the phason field on the boundary of an elliptic hole are obtained. The effect of the elliptical rigid inclusion on the stress is also discussed by comparing with the problem of containing an elliptic hole, and the presence of the internal inclusion weakens the stress values at the stress concentration points.

References

[1]  Guo, J., Zhang, Z. and Xing, Y. (2016) Antiplane Analysis for an Elliptical Inclusion in 1D Hexagonal Piezoelectric Quasicrystal Composites. Philosophical Magazine, 96, 349-369.
https://doi.org/10.1080/14786435.2015.1132852
[2]  刘又文, 杨班权. 圆形刚性夹杂双周期分布的反平面问题[J]. 力学季刊, 2003, 24(1): 142-145.
[3]  杨班权, 刘又文, 薛孟君. 颗粒增强复合材料的椭圆形刚性夹杂呈双周期分布模型的反平面问题研究[J]. 固体力学学报, 2003, 24(3): 345-351.
[4]  翟婷. 准晶材料圆形夹杂的界面缺陷问题[D]: [硕士学位论文]. 银川: 宁夏大学, 2021.
[5]  侯密山, 高存法. 含椭圆形刚性夹杂的压电材料平面问题[J]. 计算力学学报, 1997, 14(2): 187-195.
[6]  Zhang, A.B., Wang, B.L., Wang, J. and Du, J.K. (2017) Two-Dimensional Problem of Thermoelectric Materials with an Elliptic Hole or a Rigid Inclusion. International Journal of Thermal Sciences, 117, 184-195.
https://doi.org/10.1016/j.ijthermalsci.2017.03.020
[7]  戴隆超. 压电材料界面和断裂问题研究[D]: [博士学位论文]. 南京: 南京航空航天大学, 2008.
[8]  杨班权, 刘又文, 薛孟君, 等. 椭圆形刚性夹杂任意分布的平面问题[J]. 兵工学报, 2004, 25(6): 720-725.
[9]  杨班权, 刘又文, 薛孟君, 等. 集中载荷作用下弹性平面刚性夹杂的形状优化[J]. 工程力学, 2004, 21(6): 156-160.
[10]  管鹏. 平面各向异性一般光滑形状夹杂Eshelby问题解析解的研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023.
[11]  姜弘道. 弹性力学问题的边界元法[M]. 北京: 中国水利水电出版社, 2008.
[12]  袁彦鹏. 准晶材料平面断裂问题分析[D]: [硕士学位论文]. 郑州: 郑州大学, 2018.
[13]  陈帅. 一维六方准晶复合材料平面断裂问题研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2019.
[14]  Hwu, C. (2010) Anisotropic Elastic Plates. Springer Science and Business Media.
[15]  王会苹, 王桂霞, 陈德财. 含椭圆孔有限大二十面体准晶板平面弹性问题的边界元分析[J]. 应用数学和力学, 2024, 45(4): 400-415.
[16]  李联和, 刘官厅. 准晶断裂力学的复变函数方法[M]. 北京: 科学出版社, 2013.
[17]  尹姝媛, 周旺民, 范天佑. 八次对称二维准晶中的II型裂纹[J]. 应用数学和力学, 2002, 23(4): 376-380.
[18]  Fan, T.Y. (2011) Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Springer.
[19]  陈德财. 八次对称二维准晶弹性问题的边界元分析[D]: [硕士学位论文]. 呼和浩特: 内蒙古师范大学, 2023.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133