|
突出煤层瓦斯抽采顺层钻孔设计效果分析
|
Abstract:
针对突出煤层工作面预抽钻孔预抽浓度低、钻孔衰减系数大、瓦斯预抽时间长等难题,以某煤矿111805工作面为研究对象。通过对该工作面地质条件、瓦斯赋存状态及开采工艺的综合分析,对111805工作面钻孔布孔方式以及管径最优参数进行研究,并利用数值模拟软件进行辅证。结果表明:顺层钻孔抽采瓦斯在30 d后有效抽采半径为2.33 m,50 d后有效抽采半径为3 m。对模拟数据进行回归分析,得到的抽采有效半径r与抽采时间t的线性拟合关系,通过结合实际分析,确定抽采钻孔方式为顺层钻孔设计,布置间距约为4 m,瓦斯抽采管径为Ф200 mm抽采管连网抽采。以此为依据,得出工作面瓦斯抽采钻孔最佳布置参数。研究成果为突出煤层工作面预抽钻孔设计提供了参考依据。
In response to the challenges of low pre-drilling pre-extraction concentration, large drilling decay coefficient, and long gas pre-extraction time in the working face of outburst-prone coal seams, a study was conducted with the 111805 working face of a coal mine as the research object. Through a comprehensive analysis of the geological conditions, gas occurrence state, and mining technology of the working face, the optimal parameters of drilling layout and pipe diameter for the 111805 working face were studied, and numerical simulation software was used for auxiliary verification. The results showed that the effective extraction radius of the gas extraction from the in-seam drilling was 2.33 meters after 30 days and 3 meters after 50 days. Through regression analysis of the simulation data, a linear fitting relationship between the effective extraction radius r and the extraction time t was obtained. By combining with practical analysis, the drilling method was determined to be in-seam drilling design, with a layout spacing of approximately 4 meters and a gas extraction pipe diameter of 200 mm connected in a network for extraction. Based on this, the optimal layout parameters for gas extraction drilling in the working face were derived. The research results provide a reference for the design of pre-drilling in outburst-prone coal seam working faces.
[1] | 张天军, 庞明坤, 蒋兴科, 等. 负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学, 2019, 40(7): 2517-2524. |
[2] | 王刚, 李文鑫, 杜文州, 等. 变轴压加载煤体变形破坏及瓦斯渗流试验研究[J]. 岩土力学, 2016, 37(S1): 175-182. |
[3] | 张波, 谢雄刚, 许石青. 某矿顺层钻孔瓦斯抽采及布孔参数数值模拟[J]. 工矿自动化, 2018, 44(11): 49-56. |
[4] | 李飞, 薛彦平, 赵凯凯, 等. 煤层大直径钻孔瓦斯治理技术研究与应用[J]. 煤炭工程, 2021, 53(3): 84-88. |
[5] | 宋晋云. 有效提高煤矿瓦斯抽采效果途径的分析与探讨[J]. 当代化工研究, 2022(7): 13-15. |
[6] | 王一琦, 杨雷, 范超军. 高瓦斯厚煤层顺层钻孔有效抽采区及参数优化研究[J]. 煤矿安全, 2022, 53(10): 212-221. |
[7] | 于丽雅, 张宗良. 高瓦斯厚煤层本煤层预抽钻孔布置优化研究[J]. 煤炭工程, 2023, 55(7): 78-83. |
[8] | 周厚权, 申凯, 陈宾. 瓦斯抽采钻孔漏气类型划分与高效封孔技术应用研究[J]. 矿业安全与环保, 2019, 46(1): 33-36+42. |
[9] | 刘延保. 瓦斯抽采钻孔封孔成套技术及应用研究[J]. 煤炭工程, 2017, 49(4): 32-35. |
[10] | 黄致鹏, 魏国营. 全煤巷道顺层瓦斯抽采钻孔合理封孔深度研究[J]. 煤矿开采, 2016, 21(1): 101-104+100. |
[11] | 张伟峰. 顺层瓦斯抽采钻孔封孔技术优化[J]. 煤, 2024, 33(7): 42-44+75. |
[12] | 王晓蕾, 姬治岗, 谢怡婷, 等. 采煤工作面瓦斯涌出量预测技术现状及发展趋势[J]. 科学技术与工程, 2019, 19(33): 1-9. |
[13] | 陈静, 崔啸, 王磊, 等. 不同埋深煤体孔隙结构特征及瓦斯吸附特性研究[J]. 矿业研究与开发, 2023, 43(3): 166-171. |
[14] | 周洋, 赵宇, 张志强, 等. 隧道通风管道布置参数对瓦斯运移特性的影响[J]. 科学技术与工程, 2021, 21(29): 12718-12726. |
[15] | 赵洋. 深部低透煤层孔内卸压强化瓦斯抽采过程中的多场耦合机制[D]: [博士学位论文]. 北京: 中国矿业大学, 2023. |
[16] | 陈建强, 胡延伟, 刘昆轮, 等. 急倾斜特厚煤层水平分段开采瓦斯预抽技术[J]. 科学技术与工程, 2020, 20(34): 14034-14038. |
[17] | 岑培山, 田坤云, 魏二剑, 等. 多级加卸载下层理裂隙煤体瓦斯渗流轴向效应及应用[J]. 煤矿安全, 2021, 52(12): 9-14. |
[18] | 王晓蕾. 低渗透煤层提高瓦斯采收率技术现状及发展趋势[J]. 科学技术与工程, 2019, 19(17): 9-17. |
[19] | 薛彦平. 瓦斯抽采钻孔布置方案参数优化: 以保德煤矿为例[J]. 科学技术与工程, 2024, 24(8): 3164-3170. |
[20] | 李波, 孙东辉, 张路路. 煤矿顺层钻孔瓦斯抽采合理布孔间距研究[J]. 煤炭科学技术, 2016, 44(8): 121-126+155. |
[21] | Mora, C.A. and Wattenbarger, R.A. (2009) Analysis and Verification of Dual Porosity and CBM Shape Factors. Journal of Canadian Petroleum Technology, 48, 17-21. https://doi.org/10.2118/09-02-17 |
[22] | Liu, Q., Cheng, Y., Zhou, H., Guo, P., An, F. and Chen, H. (2014) A Mathematical Model of Coupled Gas Flow and Coal Deformation with Gas Diffusion and Klinkenberg Effects. Rock Mechanics and Rock Engineering, 48, 1163-1180. https://doi.org/10.1007/s00603-014-0594-9 |
[23] | Li, J., Chen, Z., Wu, K., Li, R., Xu, J., Liu, Q., et al. (2018) Effect of Water Saturation on Gas Slippage in Tight Rocks. Fuel, 225, 519-532. https://doi.org/10.1016/j.fuel.2018.03.186 |
[24] | Hu, G., Wang, H., Fan, X., Yuan, Z. and Hong, S. (2008) Mathematical Model of Coalbed Gas Flow with Klinkenberg Effects in Multi-Physical Fields and Its Analytic Solution. Transport in Porous Media, 76, 407-420. https://doi.org/10.1007/s11242-008-9254-4 |