|
Bioprocess 2024
玉米多孔淀粉的制备与理化性质研究
|
Abstract:
使用玉米淀粉作为原料,通过复合酶法成功制备了具有优良特性的多孔淀粉,并对其理化性质进行了详细分析。研究结果显示,在最佳的酶解条件下,酶配比为1:3 (g/g)、酶用量为3%、底物浓度为25%、酶解时间为8 h、酶解温度为45℃、以及pH值为5.5时得到的多孔淀粉展现出了较高的吸油率(189.56%)、较大的比容积(2.13 cm3/g)、合适的溶解率(13.17%)以及显著的膨胀力(3.63 g/g),这些指标均明显优于原始淀粉。扫描电子显微镜(SEM)的观察进一步证实了多孔淀粉颗粒的完整性和表面的蜂窝状微孔结构,孔径和深度均处于理想状态,所制备的多孔淀粉具有广泛的潜在应用价值。
Using corn starch as raw material, porous starch with excellent properties was successfully prepared by compound enzymatic method, and its physicochemical properties were analyzed in detail. The results showed that under the optimal enzymatic hydrolysis conditions, the porous starch obtained at the enzyme ratio of 1:3 (g/g), the enzyme dosage of 3%, the substrate concentration of 25%, the enzymatic hydrolysis time of 8 h, the enzymatic hydrolysis temperature of 45?C, and the pH value of 5.5 showed higher oil absorption rate (189.56%), larger specific volume (2.13 cm3/g), suitable solubility (13.17%) and significant swelling force (3.63 g/g), which were significantly better than those of the original starch. The observation of scanning electron microscopy (SEM) further confirmed the integrity of porous starch granules, the honeycomb microporous structure on the surface, and the pore size and depth were in an ideal state, and the prepared porous starch has a wide range of potential application value.
[1] | Doi, S., Clark, J.H., Macquarrie, D.J. and Milkowski, K. (2002) New Materials Based on Renewable Resources: Chemically Modified Expanded Corn Starches as Catalysts for Liquid Phase Organic Reactions. Chemical Communications, 2002, 2632-2633. https://doi.org/10.1039/b207780a |
[2] | Qian, J., Chen, X., Ying, X. and Lv, B. (2010) Optimisation of Porous Starch Preparation by Ultrasonic Pretreatment Followed by Enzymatic Hydrolysis. International Journal of Food Science & Technology, 46, 179-185. https://doi.org/10.1111/j.1365-2621.2010.02469.x |
[3] | Niemann, C. and Whistler, R.L. (1992) Effect of Acid Hydrolysis and Ball Milling on Porous Corn Starch. Starch—Stärke, 44, 409-414. https://doi.org/10.1002/star.19920441103 |
[4] | Dura, A., Błaszczak, W. and Rosell, C.M. (2014) Functionality of Porous Starch Obtained by Amylase or Amyloglucosidase Treatments. Carbohydrate Polymers, 101, 837-845. https://doi.org/10.1016/j.carbpol.2013.10.013 |
[5] | Zhao, B.B., Gu, Z.B., Zhang, Y.T., et al. (2022) Starch-Based Carriers of Paclitaxel: A Systematic Review of Carriers, Interactions, and Mechanisms. Carbohydrate Polymers, 291, Article ID: 119628. |
[6] | Zhao, B., Du, J., Zhang, Y., Gu, Z., Li, Z., Cheng, L., et al. (2022) Polysaccharide-coated Porous Starch-Based Oral Carrier for Paclitaxel: Adsorption and Sustained Release in Colon. Carbohydrate Polymers, 291, Article ID: 119571. https://doi.org/10.1016/j.carbpol.2022.119571 |
[7] | Hj. Latip, D.N., Samsudin, H., Utra, U. and Alias, A.K. (2020) Modification Methods toward the Production of Porous Starch: A Review. Critical Reviews in Food Science and Nutrition, 61, 2841-2862. https://doi.org/10.1080/10408398.2020.1789064 |
[8] | Wu, Y., Du, X., Ge, H. and Lv, Z. (2011) Preparation of Microporous Starch by Glucoamylase and Ultrasound. Starch—Stärke, 63, 217-225. https://doi.org/10.1002/star.201000036 |
[9] | Isono, Y., Kumagai, T. and Watanabe, T. (1994) Ultrasonic Degradation of Waxy Rice Starch. Bioscience, Biotechnology, and Biochemistry, 58, 1799-1802. https://doi.org/10.1271/bbb.58.1799 |
[10] | Chen, J., Wang, Y., Liu, J. and Xu, X. (2020) Preparation, Characterization, Physicochemical Property and Potential Application of Porous Starch: A Review. International Journal of Biological Macromolecules, 148, 1169-1181. https://doi.org/10.1016/j.ijbiomac.2020.02.055 |
[11] | Fannon, J.E., Gray, J.A., Gunawan, N., et al. (2003) The Channels of Starch Granules. Food Science and Biotechnology, 12, 700-704. |
[12] | Han, X., Wen, H., Luo, Y., Yang, J., Xiao, W., Ji, X., et al. (2021) Effects of α-Amylase and Glucoamylase on the Characterization and Function of Maize Porous Starches. Food Hydrocolloids, 116, Article ID: 106661. https://doi.org/10.1016/j.foodhyd.2021.106661 |
[13] | Benavent-Gil, Y. and Rosell, C.M. (2017) Comparison of Porous Starches Obtained from Different Enzyme Types and Levels. Carbohydrate Polymers, 157, 533-540. https://doi.org/10.1016/j.carbpol.2016.10.047 |
[14] | Guo, L., Yuan, Y., Li, J., Tan, C., Janaswamy, S., Lu, L., et al. (2021) Comparison of Functional Properties of Porous Starches Produced with Different Enzyme Combinations. International Journal of Biological Macromolecules, 174, 110-119. https://doi.org/10.1016/j.ijbiomac.2021.01.165 |
[15] | Guo, L., Li, J., Gui, Y., Zhu, Y., Yu, B., Tan, C., et al. (2020) Porous Starches Modified with Double Enzymes: Structure and Adsorption Properties. International Journal of Biological Macromolecules, 164, 1758-1765. https://doi.org/10.1016/j.ijbiomac.2020.07.323 |
[16] | 王彩娇, 赵安琪, 于雷, 等. 高粱多孔淀粉制备工艺的优化及理化性质研究[J]. 粮食与油脂, 2019, 32(9): 35-39. |
[17] | Keeratiburana, T., Hansen, A.R., Soontaranon, S., Blennow, A. and Tongta, S. (2020) Porous High Amylose Rice Starch Modified by Amyloglucosidase and Maltogenic α-Amylase. Carbohydrate Polymers, 230, Article ID: 115611. https://doi.org/10.1016/j.carbpol.2019.115611 |
[18] | 徐忠, 缪铭, 李丽莎. 酶法制备多孔玉米淀粉的影响因素研究[J]. 中国粮油学报, 2006, 21(3): 63-68. |
[19] | 杨永美, 刘钟栋, 毕礼政, 等. 超声波微波协同组合酶法制备玉米多孔淀粉[J]. 中国食品添加剂, 2012(1): 76-81. |
[20] | 施晓丹, 汪少芸. 多孔淀粉的制备与应用研究进展[J]. 中国粮油学报, 2021, 36(2): 187-195. |
[21] | 黄晶晶, 施晓丹, 汪少芸. 豆薯多孔淀粉的制备、理化性质及吸附性能的研究[J]. 食品研究与开发, 2022, 43(17): 120-126. |
[22] | 许丽娜. 多孔淀粉的制备与性质研究[D]: [硕士学位论文]. 泰安: 山东农业大学, 2010. |