Let
,
, be the given even number of the Strong Goldbach Conjecture Problem. Then, m can be called the median of the problem. So, all Goldbach partitions
exist a relationship,
and
, where
and d is the distance from m to either p or q. Now we denote the finite feasible solutions of the problem as
. If we utilize the Eratosthenes sieve principle to efface those false objects from set
in
stages, where
,
References
[1]
(2014) Empirical Verification of the Even Goldbach Conjecture and Computation of Prime Gaps up to 4 × 1018, Oliveira e Silva, Tomás and Herzog, Siegfried and Pardi, Silvio, Mathematics of Computation, 83, 288, 2033-2060.
[2]
Wolfram Research, Inc. (2002) Weisstein, Eric W Goldbach Conjecture. https://mathworld.wolfram.com/
[3]
Goldbach, C. (1742) Letter to L. Euler. http://www.math.dartmouth.edu/%20euler/correspondence/letters/OO0765.pdf
[4]
Bender, A.O. (2013) Representing an Element in Fq[t] as the Sum of Two Irreducibles. Mathematika, 60, 166-182. https://doi.org/10.1112/s0025579313000065
[5]
Brun, V. (1919) La série 1/5+1/7+1/11+1/13+1/17+1/19+1/29+1/31+1/41+1/43+ 1/59+1/61+..., où les dénominateurs sont nombres premiers jumeaux est convergente ou finie. Bulletin des Sciences Mathématiques, 43, 100-104, 124-128. (In French)
[6]
Chen, J.R. (1973) On the Representation of a Larger Even Integer as the Sum of a Prime and the Product of at Most Two Primes. SCIENTIA SINICA Chimica, 16, 157-176.
[7]
Helfgott, H.A. (2013) The Ternary Goldbach Conjecture Is True. arXiv Preprint arXiv:1312.7748.
[8]
Helfgott, H.A. (2013) Major Arcs for Goldbach’s Problem. arXiv Preprint arXiv:1305.2897.