While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.
References
[1]
Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity. PhysicalReview, 48, 73-77. https://doi.org/10.1103/physrev.48.73
[2]
Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. FortschrittederPhysik, 61, 781-811. https://doi.org/10.1002/prop.201300020
[3]
Morris, M.S. and Thorne, K.S. (1988) Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity. American Journal of Physics, 56, 395-412. https://doi.org/10.1119/1.15620
[4]
Maldacena, J. and Milekhin, A. (2021) Humanly Traversable Wormholes. PhysicalReviewD, 103, Article 066007. https://doi.org/10.1103/physrevd.103.066007
[5]
Kim, S. and Lee, H. (2001) Exact Solutions of a Charged Wormhole. PhysicalReviewD, 63, Article 064014. https://doi.org/10.1103/physrevd.63.064014
[6]
Misner, C.W., Thorne, K.S., and Wheeler, J.A. (1973) Gravitation. W. Freeman, 608.
[7]
Kuhfittig, P.K.F. (2020) On the Nature of Exotic Matter in Morris-Thorne Wormholes. NewHorizonsinMathematicalPhysics, 4, 29-32. https://doi.org/10.22606/nhmp.2020.43001
[8]
Kuhfittig, P.K.F. (2020) A Note on the Stability of Morris-Thorne Wormholes. FundamentalJournalofModernPhysics, 14, 23-31.
[9]
Ponce de Leon, J. (1993) Limiting Configurations Allowed by the Energy Conditions. GeneralRelativityandGravitation, 25, 1123-1137. https://doi.org/10.1007/bf00763756
[10]
Rahaman, F., Kuhfittig, P.K.F., Ray, S. and Islam, N. (2014) Possible Existence of Wormholes in the Galactic Halo Region. TheEuropeanPhysicalJournalC, 74, Article 2750. https://doi.org/10.1140/epjc/s10052-014-2750-5
[11]
Lobo, F.S.N. and Oliveira, M.A. (2009) Wormhole Geometries in Modified Theories of Gravity. PhysicalReviewD, 80, Article 104012. https://doi.org/10.1103/physrevd.80.104012
[12]
Kuhfittig, P.K.F. (2021) Comparing Modified Gravity and Noncommutative Geometry in the Context of Dark Matter and Traversable Wormholes: A Survey. arXiv: 2101.00654. https://doi.org/10.48550/arXiv.2101.00654
[13]
Ford, L.H. and Roman, T.A. (1996) Quantum Field Theory Constrains Traversable Wormhole Geometries. PhysicalReviewD, 53, 5496-5507. https://doi.org/10.1103/physrevd.53.5496
[14]
Kuhfittig, P.K.F. (2008) Viable Models of Traversable Wormholes Supported by Small Amounts of Exotic Matter. InternationalJournalofPureandAppliedMathematics, 44, Article 467.
[15]
Kuhfittig, P.K.F. (2009) Theoretical Construction of Morris-Thorne Wormholes Compatible with Quantum Field Theory. arXiv: 0908.4233. https://doi.org/10.48550/arXiv.0908.4233
[16]
Kuhfittig, P.K.F. (2013) A Note on Wormholes in Slightly Modified Gravitational Theories. AdvancedStudiesinTheoreticalPhysics, 7, 1087-1093. https://doi.org/10.12988/astp.2013.3998
[17]
Kuhfittig, P.K.F. (2022) A Note on Wormholes as Compact Stellar Objects. Funda-mentalJournalofModernPhysics, 17, 63-70.
[18]
Witten, E. (1996) Bound States of Strings and p-Branes. NuclearPhysicsB, 460, 335-350. https://doi.org/10.1016/0550-3213(95)00610-9
[19]
Seiberg, N. and Witten, E. (1999) String Theory and Noncommutative Geometry. JournalofHighEnergyPhysics, 9909, Article 032. https://doi.org/10.1088/1126-6708/1999/09/032
[20]
Smailagic, A. and Spallucci, E. (2003) Feynman Path Integral on the Non-Commutative Plane. JournalofPhysicsA: MathematicalandGeneral, 36, L467-L471. https://doi.org/10.1088/0305-4470/36/33/101
[21]
Nicolini, P., Smailagic, A. and Spallucci, E. (2006) Noncommutative Geometry Inspired Schwarzschild Black Hole. PhysicsLettersB, 632, 547-551. https://doi.org/10.1016/j.physletb.2005.11.004
[22]
Rinaldi, M. (2011) A New Approach to Non-Commutative Inflation. ClassicalandQuantumGravity, 28, Article 105022. https://doi.org/10.1088/0264-9381/28/10/105022
[23]
Rahaman, F., Islam, S., Kuhfittig, P.K.F. and Ray, S. (2012) Searching for Higher-Dimensional Wormholes with Noncommutative Geometry. PhysicalReviewD, 86, Article 106101. https://doi.org/10.1103/physrevd.86.106010
Liang, J. and Liu, B. (2012) Thermodynamics of Noncommutative Geometry Inspired BTZ Black Hole Based on Lorentzian Smeared Mass Distribution. EPL (EurophysicsLetters), 100, Article 30001. https://doi.org/10.1209/0295-5075/100/30001
[26]
Nozari, K. and Mehdipour, S.H. (2008) Hawking Radiation as Quantum Tunneling from a Noncommutative Schwarzschild Black Hole. ClassicalandQuantumGravity, 25, Article 175015. https://doi.org/10.1088/0264-9381/25/17/175015
[27]
Kuhfittig, P.K.F. and Gladney, V.D. (2017) Noncommutative-Geometry Inspired Charged Wormholes with Low Tidal Forces. JournalofAppliedMathematicsandPhysics, 5, 574-581. https://doi.org/10.4236/jamp.2017.53049
Kuhfittig, P.K.F. (2023) Supporting Traversable Wormholes: The Case for Non-commutative Geometry. arXiv: 2312.08392. https://doi.org/10.48550/arXiv.2312.08392