全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Macroscopic Traversable Wormholes: Minimum Requirements

DOI: 10.4236/ijaa.2024.143015, PP. 230-243

Keywords: Morris-Thorne Wormholes, Traversability, Minimum Requirements, Stability, Compatibility with Quantum Field Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

While wormholes are just as good a prediction of Einstein’s theory as black holes, they are subject to severe restrictions from quantum field theory. To allow for the possibility of interstellar travel, a macroscopic wormhole would need to maintain sufficiently low radial tidal forces. It is proposed in this paper that the assumption of zero tidal forces, i.e., the limiting case, is sufficient for overcoming the restrictions from quantum field theory. The feasibility of this approach is subsequently discussed by 1) introducing the additional conditions needed to ensure that the radial tidal forces can indeed be sufficiently low and 2) by viewing traversable wormholes as emergent phenomena, thereby increasing the likelihood of their existence.

References

[1]  Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity. Physical Review, 48, 73-77.
https://doi.org/10.1103/physrev.48.73
[2]  Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 61, 781-811.
https://doi.org/10.1002/prop.201300020
[3]  Morris, M.S. and Thorne, K.S. (1988) Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity. American Journal of Physics, 56, 395-412.
https://doi.org/10.1119/1.15620
[4]  Maldacena, J. and Milekhin, A. (2021) Humanly Traversable Wormholes. Physical Review D, 103, Article 066007.
https://doi.org/10.1103/physrevd.103.066007
[5]  Kim, S. and Lee, H. (2001) Exact Solutions of a Charged Wormhole. Physical Review D, 63, Article 064014.
https://doi.org/10.1103/physrevd.63.064014
[6]  Misner, C.W., Thorne, K.S., and Wheeler, J.A. (1973) Gravitation. W. Freeman, 608.
[7]  Kuhfittig, P.K.F. (2020) On the Nature of Exotic Matter in Morris-Thorne Wormholes. New Horizons in Mathematical Physics, 4, 29-32.
https://doi.org/10.22606/nhmp.2020.43001
[8]  Kuhfittig, P.K.F. (2020) A Note on the Stability of Morris-Thorne Wormholes. Fundamental Journal of Modern Physics, 14, 23-31.
[9]  Ponce de Leon, J. (1993) Limiting Configurations Allowed by the Energy Conditions. General Relativity and Gravitation, 25, 1123-1137.
https://doi.org/10.1007/bf00763756
[10]  Rahaman, F., Kuhfittig, P.K.F., Ray, S. and Islam, N. (2014) Possible Existence of Wormholes in the Galactic Halo Region. The European Physical Journal C, 74, Article 2750.
https://doi.org/10.1140/epjc/s10052-014-2750-5
[11]  Lobo, F.S.N. and Oliveira, M.A. (2009) Wormhole Geometries in Modified Theories of Gravity. Physical Review D, 80, Article 104012.
https://doi.org/10.1103/physrevd.80.104012
[12]  Kuhfittig, P.K.F. (2021) Comparing Modified Gravity and Noncommutative Geometry in the Context of Dark Matter and Traversable Wormholes: A Survey. arXiv: 2101.00654.
https://doi.org/10.48550/arXiv.2101.00654
[13]  Ford, L.H. and Roman, T.A. (1996) Quantum Field Theory Constrains Traversable Wormhole Geometries. Physical Review D, 53, 5496-5507.
https://doi.org/10.1103/physrevd.53.5496
[14]  Kuhfittig, P.K.F. (2008) Viable Models of Traversable Wormholes Supported by Small Amounts of Exotic Matter. International Journal of Pure and Applied Mathematics, 44, Article 467.
[15]  Kuhfittig, P.K.F. (2009) Theoretical Construction of Morris-Thorne Wormholes Compatible with Quantum Field Theory. arXiv: 0908.4233.
https://doi.org/10.48550/arXiv.0908.4233
[16]  Kuhfittig, P.K.F. (2013) A Note on Wormholes in Slightly Modified Gravitational Theories. Advanced Studies in Theoretical Physics, 7, 1087-1093.
https://doi.org/10.12988/astp.2013.3998
[17]  Kuhfittig, P.K.F. (2022) A Note on Wormholes as Compact Stellar Objects. Funda-mental Journal of Modern Physics, 17, 63-70.
[18]  Witten, E. (1996) Bound States of Strings and p-Branes. Nuclear Physics B, 460, 335-350.
https://doi.org/10.1016/0550-3213(95)00610-9
[19]  Seiberg, N. and Witten, E. (1999) String Theory and Noncommutative Geometry. Journal of High Energy Physics, 9909, Article 032.
https://doi.org/10.1088/1126-6708/1999/09/032
[20]  Smailagic, A. and Spallucci, E. (2003) Feynman Path Integral on the Non-Commutative Plane. Journal of Physics A: Mathematical and General, 36, L467-L471.
https://doi.org/10.1088/0305-4470/36/33/101
[21]  Nicolini, P., Smailagic, A. and Spallucci, E. (2006) Noncommutative Geometry Inspired Schwarzschild Black Hole. Physics Letters B, 632, 547-551.
https://doi.org/10.1016/j.physletb.2005.11.004
[22]  Rinaldi, M. (2011) A New Approach to Non-Commutative Inflation. Classical and Quantum Gravity, 28, Article 105022.
https://doi.org/10.1088/0264-9381/28/10/105022
[23]  Rahaman, F., Islam, S., Kuhfittig, P.K.F. and Ray, S. (2012) Searching for Higher-Dimensional Wormholes with Noncommutative Geometry. Physical Review D, 86, Article 106101.
https://doi.org/10.1103/physrevd.86.106010
[24]  Kuhfittig, P.K.F. (2013) Macroscopic Wormholes in Noncommutative Geometry. International Journal of Pure and Apllied Mathematics, 89, 401-408.
https://doi.org/10.12732/ijpam.v89i3.11
[25]  Liang, J. and Liu, B. (2012) Thermodynamics of Noncommutative Geometry Inspired BTZ Black Hole Based on Lorentzian Smeared Mass Distribution. EPL (Europhysics Letters), 100, Article 30001.
https://doi.org/10.1209/0295-5075/100/30001
[26]  Nozari, K. and Mehdipour, S.H. (2008) Hawking Radiation as Quantum Tunneling from a Noncommutative Schwarzschild Black Hole. Classical and Quantum Gravity, 25, Article 175015.
https://doi.org/10.1088/0264-9381/25/17/175015
[27]  Kuhfittig, P.K.F. and Gladney, V.D. (2017) Noncommutative-Geometry Inspired Charged Wormholes with Low Tidal Forces. Journal of Applied Mathematics and Physics, 5, 574-581.
https://doi.org/10.4236/jamp.2017.53049
[28]  Kuhfittig, P.K.F. (2023) Macroscopic Noncommutative-Geometry Wormholes as Emergent Phenomena. Letters in High Energy Physics, 2023, 1-3.
https://doi.org/10.31526/lhep.2023.399
[29]  Lewis, P.J. (2017) Quantum Mechanics, Emergence, and Fundamentality. Philosophica, 92, 1-18.
https://doi.org/10.21825/philosophica.82111
[30]  Kuhfittig, P.K.F. (2023) Supporting Traversable Wormholes: The Case for Non-commutative Geometry. arXiv: 2312.08392.
https://doi.org/10.48550/arXiv.2312.08392

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133