全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Glassy Carbon Electrode Modified with Cellulose Nanofibrils from Ammophila arenaria for the Sensitive Detection of L-Trytophan

DOI: 10.4236/jst.2024.143003, PP. 35-50

Keywords: Nanofibrillated Cellulose, Chitosan, Chemically Modified Glassy Carbon Electrode, Electrochemical Detection, L-Tryptophan

Full-Text   Cite this paper   Add to My Lib

Abstract:

L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10?4 mM and 10?2 mM, a detection limit of 0.2 μM, and a high sensitivity of 140.0 μA?mM?1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.

References

[1]  Fiorucci, A.R. and Cavalheiro, É.T.G. (2002) The Use of Carbon Paste Electrode in the Direct Voltammetric Determination of Tryptophan in Pharmaceutical Formulations. Journal of Pharmaceutical and Biomedical Analysis, 28, 909-915.
https://doi.org/10.1016/s0731-7085(01)00711-7
[2]  Liu, J., Dong, S., He, Q., Yang, S., Xie, M., Deng, P., et al. (2019) Facile Preparation of Fe3O4/C Nanocomposite and Its Application for Cost-Effective and Sensitive Detection of Tryptophan. Biomolecules, 9, Article 245.
https://doi.org/10.3390/biom9060245
[3]  Sundaresan, R., Mariyappan, V., Chen, S., Keerthi, M. and Ramachandran, R. (2021) Electrochemical Sensor for Detection of Tryptophan in the Milk Sample Based on MnWO4 Nanoplates Encapsulated RGO Nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625, Article ID: 126889.
https://doi.org/10.1016/j.colsurfa.2021.126889
[4]  Sakthivel, R., Mutharani, B., Chen, S., Kubendhiran, S., Chen, T., Al-Hemaid, F.M.A., et al. (2018) A Simple and Rapid Electrochemical Determination of L-Tryptophan Based on Functionalized Carbon Black/Poly-L-Histidine Nanocomposite. Journal of The Electrochemical Society, 165, B422-B430.
https://doi.org/10.1149/2.0381810jes
[5]  Zhang, L., Sun, M., Jing, T., Li, S. and Ma, H. (2022) A Facile Electrochemical Sensor Based on Green Synthesis of Cs/Ce-MOF for Detection of Tryptophan in Human Serum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129225.
https://doi.org/10.1016/j.colsurfa.2022.129225
[6]  Wang, L., Yang, R., Li, J., Qu, L. and Harrington, P.D.B. (2019) A Highly Selective and Sensitive Electrochemical Sensor for Tryptophan Based on the Excellent Surface Adsorption and Electrochemical Properties of PSS Functionalized Graphene. Talanta, 196, 309-316.
https://doi.org/10.1016/j.talanta.2018.12.058
[7]  Li, N., Liu, W., Li, W., Li, S., Chen, X., Bi, K., et al. (2010) Plasma Metabolic Profiling of Alzheimer’s Disease by Liquid Chromatography/Mass Spectrometry. Clinical Biochemistry, 43, 992-997.
https://doi.org/10.1016/j.clinbiochem.2010.04.072
[8]  Qiu, Y., Cai, G., Su, M., Chen, T., Zheng, X., Xu, Y., et al. (2009) Serum Metabolite Profiling of Human Colorectal Cancer Using GC-TOFMS and UPLC-QTOFMS. Journal of Proteome Research, 8, 4844-4850.
https://doi.org/10.1021/pr9004162
[9]  Yamada, K., Miyazaki, T., Shibata, T., Hara, N. and Tsuchiya, M. (2008) Simultaneous Measurement of Tryptophan and Related Compounds by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Journal of Chromatography B, 867, 57-61.
https://doi.org/10.1016/j.jchromb.2008.03.010
[10]  Alwarthan, A.A. (1995) Chemiluminescent Determination of Tryptophan in a Flow Injection System. Analytica Chimica Acta, 317, 233-237.
https://doi.org/10.1016/0003-2670(95)00390-8
[11]  Altria, K.D., Harkin, P. and Hindson, M.G. (1996) Quantitative Determination of Tryptophan Enantiomers by Capillary Electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications, 686, 103-110.
https://doi.org/10.1016/s0378-4347(96)00037-0
[12]  Ren, J., Zhao, M., Wang, J., Cui, C. and Yang, B. (2007) Spectrophotometric Method for Determination of Tryptophan in Protein Hydrolysates. Food Technology and Biotechnology, 45, 360-366.
[13]  Gautam, J., Raj, M. and Goyal, R.N. (2020) Determination of Tryptophan at Carbon Nanomaterials Modified Glassy Carbon Sensors: A Comparison. Journal of the Electrochemical Society, 167, Article ID: 066504.
https://doi.org/10.1149/1945-7111/ab7e88
[14]  Huang, K., Xu, C., Xie, W. and Wang, W. (2009) Electrochemical Behavior and Voltammetric Determination of Tryptophan Based on 4-Aminobenzoic Acid Polymer Film Modified Glassy Carbon Electrode. Colloids and Surfaces B: Biointerfaces, 74, 167-171.
https://doi.org/10.1016/j.colsurfb.2009.07.013
[15]  Nasimi, H., Madsen, J.S., Zedan, A.H., Malmendal, A., Osther, P.J.S. and Alatraktchi, F.A. (2023) Electrochemical Sensors for Screening of Tyrosine and Tryptophan as Biomarkers for Diseases: A Narrative Review. Microchemical Journal, 190, Article ID: 108737.
https://doi.org/10.1016/j.microc.2023.108737
[16]  Maciel, J.V., Durigon, A.M.M., Souza, M.M., Quadrado, R.F., Fajardo, A.R. and Dias, D. (2019) Polysaccharides Derived from Natural Sources Applied to the Development of Chemically Modified Electrodes for Environmental Applications: A Review. Trends in Environmental Analytical Chemistry, 22, e00062.
https://doi.org/10.1016/j.teac.2019.e00062
[17]  Karthik, R., Karikalan, N. and Chen, S. (2017) Rapid Synthesis of Ethyl Cellulose Supported Platinum Nanoparticles for the Non-Enzymatic Determination of H2O2. Carbohydrate Polymers, 164, 102-108.
https://doi.org/10.1016/j.carbpol.2017.01.077
[18]  Zhan, X., Hu, G., Wagberg, T., Zhan, S., Xu, H. and Zhou, P. (2015) Electrochemical Aptasensor for Tetracycline Using a Screen-Printed Carbon Electrode Modified with an Alginate Film Containing Reduced Graphene Oxide and Magnetite (Fe3O4) Nanoparticles. Microchimica Acta, 183, 723-729.
https://doi.org/10.1007/s00604-015-1718-y
[19]  Palanisamy, S., Thangavelu, K., Chen, S., Velusamy, V., Chen, T. and Kannan, R.S. (2017) Preparation and Characterization of a Novel Hybrid Hydrogel Composite of Chitin Stabilized Graphite: Application for Selective and Simultaneous Electrochemical Detection of Dihydroxybenzene Isomers in Water. Journal of Electroanalytical Chemistry, 785, 40-47.
https://doi.org/10.1016/j.jelechem.2016.12.019
[20]  Zhou, S., Han, X. and Liu, Y. (2016) SWASV Performance toward Heavy Metal Ions Based on a High-Activity and Simple Magnetic Chitosan Sensing Nanomaterials. Journal of Alloys and Compounds, 684, 1-7.
https://doi.org/10.1016/j.jallcom.2016.05.152
[21]  Bourigua, S., Boussema, F., Bouaazi, D., Mzoughi, Z., Barhoumi, H., Majdoub, H., et al. (2024) Sensitive Electrochemical Detection of L-Tryptophan Using a Glassy Carbon Electrode Modified with Pectin Extracted from Arthrocnemum Indicum Leaves. Journal of Electroanalytical Chemistry, 953, Article ID: 117998.
https://doi.org/10.1016/j.jelechem.2023.117998
[22]  Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A. and Guan, G. (2018) Nanocellulose: Extraction and Application. Carbon Resources Conversion, 1, 32-43.
https://doi.org/10.1016/j.crcon.2018.05.004
[23]  Besbes, I., Alila, S. and Boufi, S. (2011) Nanofibrillated Cellulose from TEMPO-Oxidized Eucalyptus Fibres: Effect of the Carboxyl Content. Carbohydrate Polymers, 84, 975-983.
https://doi.org/10.1016/j.carbpol.2010.12.052
[24]  Jebali, Z., Nabili, A., Majdoub, H. and Boufi, S. (2018) Cellulose Nanofibrils (CNFs) from Ammophila Arenaria, a Natural and a Fast Growing Grass Plant. International Journal of Biological Macromolecules, 107, 530-536.
https://doi.org/10.1016/j.ijbiomac.2017.09.024
[25]  Zinoubi, K., Majdoub, H., Barhoumi, H., Boufi, S. and Jaffrezic-Renault, N. (2017) Determination of Trace Heavy Metal Ions by Anodic Stripping Voltammetry Using Nanofibrillated Cellulose Modified Electrode. Journal of Electroanalytical Chemistry, 799, 70-77.
https://doi.org/10.1016/j.jelechem.2017.05.039
[26]  Annu, Sharma, S., Nitin, A. and Jain, R. (2020) Cellulose Fabricated Pencil Graphite Sensor for the Quantification of Hazardous Herbicide Atrazine. Diamond and Related Materials, 105, Article ID: 107788.
https://doi.org/10.1016/j.diamond.2020.107788
[27]  Velusamy, V., Palanisamy, S., Chen, S., Balu, S., Yang, T.C.K. and Banks, C.E. (2019) Novel Electrochemical Synthesis of Cellulose Microfiber Entrapped Reduced Graphene Oxide: A Sensitive Electrochemical Assay for Detection of Fenitrothion Organophosphorus Pesticide. Talanta, 192, 471-477.
https://doi.org/10.1016/j.talanta.2018.09.055
[28]  Wang, X., Karaman, C., Zhang, Y. and Xia, C. (2023) Graphene Oxide/Cellulose Nanofibril Composite: A High-Performance Catalyst for the Fabrication of an Electrochemical Sensor for Quantification of P-Nitrophenol, a Hazardous Water Pollutant. Chemosphere, 331, Article ID: 138813.
https://doi.org/10.1016/j.chemosphere.2023.138813
[29]  Yıldız, C., Eskiköy Bayraktepe, D. and Yazan, Z. (2020) Electrochemical Low-Level Detection of L-Tryptophan in Human Urine Samples: Use of Pencil Graphite Leads as Electrodes for a Fast and Cost-Effective Voltammetric Method. Monatshefte für ChemieChemical Monthly, 151, 871-879.
https://doi.org/10.1007/s00706-020-02620-7
[30]  Zhang, J., Jiang, G., Goledzinowski, M., Comeau, F.J.E., Li, K., Cumberland, T., et al. (2017) Green Solid Electrolyte with Cofunctionalized Nanocellulose/Graphene Oxide Interpenetrating Network for Electrochemical Gas Sensors. Small Methods, 1, Article ID: 1700237.
https://doi.org/10.1002/smtd.201700237
[31]  Laviron, E. (1979) General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 19-28.
https://doi.org/10.1016/s0022-0728(79)80075-3
[32]  Wang, Y., Ouyang, X., Ding, Y., Liu, B., Xu, D. and Liao, L. (2016) An Electrochemical Sensor for Determination of Tryptophan in the Presence of DA Based on Poly(l-Methionine)/graphene Modified Electrode. RSC Advances, 6, 10662-10669.
https://doi.org/10.1039/c5ra24116b
[33]  Harisha, K.V., Kumara Swamy, B.E. and Ebenso, E.E. (2018) Poly (Glycine) Modified Carbon Paste Electrode for Simultaneous Determination of Catechol and Hydroquinone: A Voltammetric Study. Journal of Electroanalytical Chemistry, 823, 730-736.
https://doi.org/10.1016/j.jelechem.2018.07.021
[34]  Tasić, Ž.Z., Mihajlović, M.B.P., Radovanović, M.B., Simonović, A.T., Medić, D.V. and Antonijević, M.M. (2022) Electrochemical Determination of L-Tryptophan in Food Samples on Graphite Electrode Prepared from Waste Batteries. Scientific Reports, 12, Article No. 5469.
https://doi.org/10.1038/s41598-022-09472-7
[35]  Yao, W., Guo, H., Liu, H., Li, Q., Wu, N., Li, L., et al. (2020) Highly Electrochemical Performance of Ni-ZIF-8/N S-CNTs/CS Composite for Simultaneous Determination of Dopamine, Uric Acid and L-tryptophan. Microchemical Journal, 152, Article ID: 104357.
https://doi.org/10.1016/j.microc.2019.104357
[36]  Zhou, S., Deng, Z., Wu, Z., Xie, M., Tian, Y., Wu, Y., et al. (2019) Ta2O5/rGO Nanocomposite Modified Electrodes for Detection of Tryptophan through Electrochemical Route. Nanomaterials, 9, Article 811.
https://doi.org/10.3390/nano9060811
[37]  Zagitova, L.R., Maistrenko, V.N., Yarkaeva, Y.A., Zagitov, V.V., Zilberg, R.A., Kovyazin, P.V., et al. (2021) Novel Chiral Voltammetric Sensor for Tryptophan Enantiomers Based on 3-Neomenthylindene as Recognition Element. Journal of Electroanalytical Chemistry, 880, Article ID: 114939.
https://doi.org/10.1016/j.jelechem.2020.114939
[38]  You, H., Mu, Z., Zhao, M., Zhou, J., Chen, Y. and Bai, L. (2018) Voltammetric Aptasensor for Sulfadimethoxine Using a Nanohybrid Composed of Multifunctional Fullerene, Reduced Graphene Oxide and Pt@Au Nanoparticles, and Based on Direct Electron Transfer to the Active Site of Glucose Oxidase. Microchimica Acta, 186, Article 1.
https://doi.org/10.1007/s00604-018-3127-5
[39]  Karim-Nezhad, G., Sarkary, A., Khorablou, Z. and Seyed Dorraji, P. (2018) Electro-Chemical Analysis of Tryptophan Using a Nanostructuring Electrode with Multi-Walled Carbon Nanotubes and Cetyltrimethylammonium Bromide Nanocomposite. Journal of Nanostructures, 8, 266-275.
[40]  Berg, C.P. and Rohse, W.G. (1947) The Tryptophan Content of Normal Human Urine. Journal of Biological Chemistry, 170, 725-729.
https://doi.org/10.1016/s0021-9258(17)30854-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133