Background: The most frequent spinal fracture is the thoracolumbar fracture. Minimally invasive percutaneous fixation of cases having thoracolumbar vertebral fractures without neurological impairments has remained controversial. The advantages of minimally invasive percutaneous fixation are decreasing muscle and soft tissue injury, decreasing blood loss and infection rate, in addition to shortening hospital stay and recovery times. In comparison to the open technique, percutaneous fixation is adequate for treating thoracolumbar (TL) fractures without causing neurological impairments & with satisfactory outcomes in terms of kyphosis decline. Elevated radiation exposure to the surgeon &the patient, lack of decompression and fusion via bone graft, & a steep learning curve are all disadvantages of percutaneous fixation of vertebral fractures. Methods: This study was retrospectively conducted on forty-eight patients, age ranging from 16 to 65 years old, with a thoracolumbar (TL) fracture without causing neurological impairments who were meeting the eligibility criteria for fixation in the period from July 2019 to January 2024. Results: We included the forty-eight patients who met the inclusion criteria (34 males and 14 females) their ages ranged from 16 to 65 years. The most common pathology was L1 fracture in 38 patients. No major complications were experienced, only wound infection in five patients which was treated efficiently with repeated dressings and broad-spectrum antibiotics. Four patients experienced misdirected screws, only in one patient the screw encroach into the spinal canal with no deficit experienced, while the other three showed minimally laterally deviated screws. Conclusion: The advantages of percutaneous pedicle screw fixation in thoracolumbar fractures through preservation of posterior musculature, are less blood loss, shorter operative time, lower infection risk, less post-operative pain, shorter rehabilitation time as well as a shorter hospital stay. Limitations of percutaneous fixation include the inability to achieve direct spinal canal decompression and, not having the option to perform a fusion and also requiring a learning curve to master the anatomy and technique.
References
[1]
Irwin, Z.N., Arthur, M., Mullins, R.J. and Hart, R.A. (2004) Variations in Injury Patterns, Treatment, and Outcome for Spinal Fracture and Paralysis in Adult versus Geriatric Patients. Spine, 29, 796-802. https://doi.org/10.1097/01.brs.0000119400.92204.b5
[2]
Sebaaly, A., Nabhane, L., Issa El Khoury, F., Kreichati, G. and El Rachkidi, R. (2016) Vertebral Augmentation: State of the Art. AsianSpineJournal, 10, 370-376. https://doi.org/10.4184/asj.2016.10.2.370
[3]
Sebaaly, A., Rizkallah, M., Bachour, F., Atallah, F., Moreau, P.E. and Maalouf, G. (2017) Percutaneous Cement Augmentation for Osteoporotic Vertebral Fractures. EFORTOpenReviews, 2, 293-299. https://doi.org/10.1302/2058-5241.2.160057
[4]
Kanna, R.M., Raja, D.C., Shetty, A.P. and Rajasekaran, S. (2019) Thoracolumbar Fracture Dislocations without Spinal Cord Injury: Classification and Principles of Management. GlobalSpineJournal, 11, 63-70. https://doi.org/10.1177/2192568219890568
[5]
Wang, W., Duan, K., Ma, M., Jiang, Y., Liu, T., Liu, J., etal. (2018) Tranexamic Acid Decreases Visible and Hidden Blood Loss without Affecting Prethrombotic State Molecular Markers in Transforaminal Thoracic Interbody Fusion for Treatment of Thoracolumbar Fracture-dislocation. Spine, 43, E734-E739. https://doi.org/10.1097/brs.0000000000002491
[6]
McLain, R.F. (2006) The Biomechanics of Long versus Short Fixation for Thoracolumbar Spine Fractures. Spine, 31, S70-S79. https://doi.org/10.1097/01.brs.0000218221.47230.dd
Reinhold, M., Audigé, L., Schnake, K.J., Bellabarba, C., Dai, L. and Oner, F.C. (2013) AO Spine Injury Classification System: A Revision Proposal for the Thoracic and Lumbar Spine. EuropeanSpineJournal, 22, 2184-2201. https://doi.org/10.1007/s00586-013-2738-0
[9]
Wood, K.B., Buttermann, G.R., Phukan, R., Harrod, C.C., Mehbod, A., Shannon, B., etal. (2015) Operative Compared with Nonoperative Treatment of a Thoracolumbar Burst Fracture without Neurological Deficit: A Prospective Randomized Study with Follow-Up at Sixteen to Twenty-Two Years. JournalofBoneandJointSurgery, 97, 3-9. https://doi.org/10.2106/jbjs.n.00226
[10]
Mattei, T.A., Hanovnikian, J. and H. Dinh, D. (2014) Progressive Kyphotic Deformity in Comminuted Burst Fractures Treated Non-Operatively: The Achilles Tendon of the Thoracolumbar Injury Classification and Severity Score (TLICS). EuropeanSpineJournal, 23, 2255-2262. https://doi.org/10.1007/s00586-014-3312-0
[11]
Siebenga, J., Leferink, V.J.M., Segers, M.J.M., Elzinga, M.J., Bakker, F.C., Haarman, H.J.T.M., etal. (2006) Treatment of Traumatic Thoracolumbar Spine Fractures: A Multicenter Prospective Randomized Study of Operative versus Nonsurgical Treatment. Spine, 31, 2881-2890. https://doi.org/10.1097/01.brs.0000247804.91869.1e
[12]
Gnanenthiran, S.R., Adie, S. and Harris, I.A. (2012) Nonoperative versus Operative Treatment for Thoracolumbar Burst Fractures without Neurologic Deficit: A Meta-Analysis. ClinicalOrthopaedics&RelatedResearch, 470, 567-577. https://doi.org/10.1007/s11999-011-2157-7
[13]
Foley, K.T., Gupta, S.K., Justis, J.R. and Sherman, M.C. (2001) Percutaneous Pedicle Screw Fixation of the Lumbar Spine. NeurosurgicalFocus, 10, 1-9. https://doi.org/10.3171/foc.2001.10.4.11
[14]
Assaker, R. (2004) Minimal Access Spinal Technologies: State-Of-The-Art, Indications, and Techniques. JointBoneSpine, 71, 459-469. https://doi.org/10.1016/j.jbspin.2004.08.006
[15]
Yang, P., Chen, K., Zhang, K., Sun, J., Yang, H. and Mao, H. (2020) Percutaneous Short-Segment Pedicle Instrumentation Assisted with O-Arm Navigation in the Treatment of Thoracolumbar Burst Fractures. JournalofOrthopaedicTranslation, 21, 1-7. https://doi.org/10.1016/j.jot.2019.11.002
[16]
Sebaaly, A., Rizkallah, M., Riouallon, G., Wang, Z., Moreau, P.E., Bachour, F., etal. (2018) Percutaneous Fixation of Thoracolumbar Vertebral Fractures. EFORTOpenReviews, 3, 604-613. https://doi.org/10.1302/2058-5241.3.170026
[17]
Kim, D., Lee, S., Chung, S.K. and Lee, H. (2005) Comparison of Multifidus Muscle Atrophy and Trunk Extension Muscle Strength: Percutaneous versus Open Pedicle Screw Fixation. Spine, 30, 123-129. https://doi.org/10.1097/01.brs.0000148999.21492.53
Rampersaud, Y.R., Annand, N. and Dekutoski, M.B. (2006) Use of Minimally Invasive Surgical Techniques in the Management of Thoracolumbar Trauma. Spine, 31, S96-S102. https://doi.org/10.1097/01.brs.0000218250.51148.5b
[20]
Weber, B.R., Grob, D., Dvorák, J. and Müntener, M. (1997) Posterior Surgical Approach to the Lumbar Spine and Its Effect on the Multifidus Muscle. Spine, 22, 1765-1772. https://doi.org/10.1097/00007632-199708010-00017
[21]
Regev, G.J., Lee, Y.P., Taylor, W.R., Garfin, S.R. and Kim, C.W. (2009) Nerve Injury to the Posterior Rami Medial Branch during the Insertion of Pedicle Screws: Comparison of Mini-Open versus Percutaneous Pedicle Screw Insertion Techniques. Spine, 34, 1239-1242. https://doi.org/10.1097/brs.0b013e31819e2c5c
[22]
Jiang, X., Tian, W., Liu, B., Li, Q., Zhang, G., Hu, L., etal. (2012) Comparison of a Paraspinal Approach with a Percutaneous Approach in the Treatment of Thoracolumbar Burst Fractures with Posterior Ligamentous Complex Injury: A Prospective Randomized Controlled Trial. JournalofInternationalMedicalResearch, 40, 1343-1356. https://doi.org/10.1177/147323001204000413
[23]
Lee, J., Jang, J., Kim, T., Kim, T., Kim, S. and Moon, S. (2013) Percutaneous Short-Segment Pedicle Screw Placement without Fusion in the Treatment of Thoracolumbar Burst Fractures: Is It Effective? Comparative Study with Open Short-Segment Pedicle Screw Fixation with Posterolateral Fusion. ActaNeurochirurgica, 155, 2305-2312. https://doi.org/10.1007/s00701-013-1859-x
[24]
McAnany, S.J., Overley, S.C., Kim, J.S., Baird, E.O., Qureshi, S.A. and Anderson, P.A. (2015) Open versus Minimally Invasive Fixation Techniques for Thoracolumbar Trauma: A Meta-Analysis. GlobalSpineJournal, 6, 186-194. https://doi.org/10.1055/s-0035-1554777
[25]
Schroeder, G.D., Harrop, J.S. and Vaccaro, A.R. (2017) Thoracolumbar Trauma Classification. Neurosurgery Clinics of North America, 28, 23-29. https://doi.org/10.1016/j.nec.2016.07.007
[26]
Lyu, J., Chen, K., Tang, Z., Chen, Y., Li, M. and Zhang, Q. (2016) A Comparison of Three Different Surgical Procedures in the Treatment of Type a Thoracolumbar Fractures: A Randomized Controlled Trial. InternationalOrthopaedics, 40, 1233-1238. https://doi.org/10.1007/s00264-016-3129-z
[27]
Vanek, P., Bradac, O., Konopkova, R., de Lacy, P., Lacman, J. and Benes, V. (2014) Treatment of Thoracolumbar Trauma by Short-Segment Percutaneous Transpedicular Screw Instrumentation: Prospective Comparative Study with a Minimum 2-Year Follow-Up. JournalofNeurosurgery: Spine, 20, 150-156. https://doi.org/10.3171/2013.11.spine13479
[28]
Dong, S.H., Chen, H.N., Tian, J.W., Xia, T., Wang, L., Zhao, Q.H., etal. (2013) Effects of Minimally Invasive Percutaneous and Trans-Spatium Intermuscular Short-Segment Pedicle Instrumentation on Thoracolumbar Mono-Segmental Vertebral Fractures without Neurological Compromise. Orthopaedics&Traumatology: Surgery&Research, 99, 405-411. https://doi.org/10.1016/j.otsr.2012.12.020
[29]
Maillard, N., Buffenoir-Billet, K., Hamel, O., Lefranc, B., Sellal, O., Surer, N., et al. (2015) A Cost-Minimization Analysis in Minimally Invasive Spine Surgery Using a National Cost Scale Method. International Journal of Surgery, 15, 68-73. https://doi.org/10.1016/j.ijsu.2014.12.029
[30]
Tromme, A., Charles, Y.P., Schuller, S., Walter, A., Schaeffer, M. and Steib, J. (2017) Osteoarthritis and Spontaneous Fusion of Facet Joints after Percutaneous Instrumentation in Thoracolumbar Fractures. European Spine Journal, 28, 1121-1129. https://doi.org/10.1007/s00586-017-5173-9
[31]
Merom, L., Raz, N., Hamud, C., Weisz, I. and Hanani, A. (2009) Minimally Invasive Burst Fracture Fixation in the Thoracolumbar Region. Orthopedics, 32, 273-275. https://doi.org/10.3928/01477447-20090401-03
[32]
Wild, M.H., Glees, M., Plieschnegger, C. and Wenda, K. (2007) Five-Year Follow-Up Examination after Purely Minimally Invasive Posterior Stabilization of Thoracolumbar Fractures: A Comparison of Percutaneous Fixation of Thoracolumbar Fractures: Current Concepts 909 Minimally Invasive Percutaneously and Conventionally Open Treated Patients. Archives of Orthopaedic and Trauma Surgery, 127, 335-343.
[33]
Schmidt, O., Strasser, S., Kaufmann, V., Strasser, E. and Gahr, R. (2007) Role of Early Minimal-Invasive Spine Fixation in Acute Thoracic and Lumbar Spine Trauma. Indian Journal of Orthopaedics, 41, 374-380. https://doi.org/10.4103/0019-5413.37003
[34]
Ni, W., Huang, Y., Chi, Y., Xu, H., Lin, Y., Wang, X., et al. (2010) Percutaneous Pedicle Screw Fixation for Neurologic Intact Thoracolumbar Burst Fractures. Journal of Spinal Disorders & Techniques, 23, 530-537. https://doi.org/10.1097/bsd.0b013e3181c72d4c
[35]
Phan, K., Rao, P.J. and Mobbs, R.J. (2015) Percutaneous versus Open Pedicle Screw Fixation for Treatment of Thoracolumbar Fractures: Systematic Review and Meta-Analysis of Comparative Studies. ClinicalNeurologyandNeurosurgery, 135, 85-92. https://doi.org/10.1016/j.clineuro.2015.05.016
[36]
Palmisani, M., Gasbarrini, A., Brodano, G.B., De Iure, F., Cappuccio, M., Boriani, L., etal. (2009) Minimally Invasive Percutaneous Fixation in the Treatment of Thoracic and Lumbar Spine Fractures. EuropeanSpineJournal, 18, 71-74. https://doi.org/10.1007/s00586-009-0989-6
[37]
Rechtine, G.R., Bono, P.L., Cahill, D., Bolesta, M.J. and Chrin, A.M. (2001) Post-operative Wound Infection After Instrumentation of Thoracic and Lumbar Fractures. JournalofOrthopaedicTrauma, 15, 566-569. https://doi.org/10.1097/00005131-200111000-00006
[38]
Gelalis, I.D., Paschos, N.K., Pakos, E.E., Politis, A.N., Arnaoutoglou, C.M., Karageorgos, A.C., etal. (2011) Accuracy of Pedicle Screw Placement: A Systematic Review of Prospective inVivo Studies Comparing Free Hand, Fluoroscopy Guidance and Navigation Techniques. EuropeanSpineJournal, 21, 247-255. https://doi.org/10.1007/s00586-011-2011-3