全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Araucaria araucana Forests in Argentina: Exploring Floristic and Ecological Variability along a West-East Transect

DOI: 10.4236/ojf.2024.144024, PP. 433-450

Keywords: Forest, Floristic Identity, Rocky Outcrops, Xericity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Argentina, the Araucaria araucana forest occupies a vast area in the Northwest of Patagonia, following a pronounced gradient of increasing xericity from west to east over a short distance. These forests have been the subject of detailed studies due to their uniqueness and ecological relevance. In this context, an exhaustive investigation was carried out to understand the diversity and structure of these ecosystems. The objective was to study the floristic and ecological differences in humid and xeric areas along a west-east transect where A. araucana is distributed. Floristic surveys, geomorphological analyses, and bioclimatic data were examined. In Argentina, A. araucana integrates two distinct forest types: mesic and xeric. The xeric A. araucana forest constitutes a forest with floristic, genetic, geomorphological, and bioclimatic identity. The results highlight the importance of understanding the local variability of these ecosystems for the design of effective conservation strategies. Furthermore, they highlight the need for further research into the ecology and dynamics of these forests, especially in the context of climate change and human activities.

References

[1]  Bekessy, S. A., Allnutt, T. R., Premoli, A. C., Lara, A., Ennos, R. A., Burgman, M. A. et al. (2002). Genetic Variation in the Vulnerable and Endemic Monkey Puzzle Tree, Detected Using RAPDs. Heredity, 88, 243-249.
https://doi.org/10.1038/sj.hdy.6800033
[2]  Bhatta, K. P., Aryal, A., Baral, H., Khanal, S., Acharya, A. K., Phomphakdy, C. et al. (2021). Forest Structure and Composition under Contrasting Precipitation Regimes in the High Mountains, Western Nepal. Sustainability, 13, Article 7510.
https://doi.org/10.3390/su13137510
[3]  Bond, W. J., & Midgley, J. J. (2001). Ecology of Sprouting in Woody Plants: The Persistence Niche. Trends in Ecology & Evolution, 16, 45-51.
https://doi.org/10.1016/s0169-5347(00)02033-4
[4]  Cabrera, A. L. (1953). Esquema fitogeográfico de la República Argentina. Revista del Museo Eva Perón, Botánica, 8, 87-168.
[5]  Cabrera, O., Benítez, Á., Cumbicus, N., Naranjo, C., Ramón, P., Tinitana, F. et al. (2019). Geomorphology and Altitude Effects on the Diversity and Structure of the Vanishing Montane Forest of Southern Ecuador. Diversity, 11, Article 32.
https://doi.org/10.3390/d11030032
[6]  Carlucci, M., Teixeira, F., Brum, F., & Duarte, L. (2011). Edge Expansion of Araucaria Forest over Southern Brazilian Grasslands Relies on Nurse Plant Effect. Community Ecology, 12, 196-201.
https://doi.org/10.1556/comec.12.2011.2.7
[7]  Carvallo, G. O., Vergara-Meriño, B., Díaz, A., Villagra, C. A., & Guerrero, P. C. (2019). Rocky Outcrops Conserve Genetic Diversity and Promote Regeneration of a Threatened Relict Tree in a Critically Endangered Ecosystem. Biodiversity and Conservation, 28, 2805-2824.
https://doi.org/10.1007/s10531-019-01797-6
[8]  Chao, A., Kubota, Y., Zelený, D., Chiu, C., Li, C., Kusumoto, B. et al. (2020). Quantifying Sample Completeness and Comparing Diversities among Assemblages. Ecological Research, 35, 292-314.
https://doi.org/10.1111/1440-1703.12102
[9]  Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2015). InfoStat versión 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
http://www.infostat.com.ar
[10]  Donoso, C. (1993). Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Editorial Universitaria.
[11]  Donoso, S., Peña-Rojas, K., Espinoza, C., Badaracco, C., Santelices-Moya, R., & Cabrera-Ariza, A. (2024). Reproductive Patterns in Araucaria araucana Forests in the Andean Range, Chile. Ecological Processes, 13, Article No. 19.
https://doi.org/10.1186/s13717-024-00497-6
[12]  Drake, F., Martín, M., Herrera, M., Molina, J., Drake-Martin, F., & Martín, L. (2009). Networking Sampling of Araucaria araucana (mol.) K. Koch in Chile and the Bordering Zone of Argentina: Implications for the Genetic Resources and the Sustainable Management. iForest, 2, 207-212.
https://doi.org/10.3832/ifor0524-002
[13]  Duarte, L. de S. (2011). Phylogenetic Habitat Filtering Influences Forest Nucleation in Grasslands. Oikos, 120, 208-215.
https://doi.org/10.1111/j.1600-0706.2010.18898.x
[14]  Duarte, L. de S., Machado, R. E., Hartz, S. M., & Pillar, V. D. (2006). What Saplings Can Tell Us about Forest Expansion over Natural Grasslands. Journal of Vegetation Science, 17, 799-808.
https://doi.org/10.1111/j.1654-1103.2006.tb02503.x
[15]  Duplancic, A. (2015). Autoecología de Araucaria araucana en el noroeste extra-andino xérico de Patagonia. Ph.D. Thesis, Universidad Nacional de Córdoba.
[16]  Duplancic, A., & Martínez Carretero, E. (2013). Vías de regeneración de Araucaria araucana en el bosque xérico de Caviahue, Neuquén. Boletín Sociedad Argentina de Botánica, 48, 62.
[17]  Duplancic, A., Martínez Carretero, E., Cavagnaro, B., Moratta, M. H., & Navas Romero, A. L. (2015). Factores que inciden en la germinación de Araucaria araucana (Araucariaceae) del bosque xérico. Revista Facultad de Ciencias Agrarias, 47, 71-82.
[18]  Echeverria, C., Zamorano, C., & Cortés, M. (2004). Conservation and Restoration of Monkey Puzzle (Araucaria araucana) Forests in Chile. Global Trees Campaign. Final Report.
[19]  Echeverria, M. R., Bamonte, F. P., Marcos, M. A., Sottile, G. D., & Mancini, M. V. (2022). Past Vegetation Reconstruction Maps and Paleoclimatic Variability Inferred by Pollen Records in Southern Patagonia Argentina Since the Late Glacial-Holocene Transition. Journal of South American Earth Sciences, 116, Article 103834.
https://doi.org/10.1016/j.jsames.2022.103834
[20]  Ewers, R. M., Didham, R. K., Fahrig, L., Ferraz, G., Hector, A., Holt, R. D. et al. (2011). A Large-Scale Forest Fragmentation Experiment: The Stability of Altered Forest Ecosystems Project. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3292-3302.
https://doi.org/10.1098/rstb.2011.0049
[21]  Frelich, L. (2016). Forest Dynamics. F1000Research, 5, 183.
https://doi.org/10.12688/f1000research.7412.1
[22]  Fuentes, G., González, F., Saavedra, J., López-Sepúlveda, P., Victoriano, P. F., Stuessy, T. F. et al. (2021). Assessing Signals of Selection and Historical Demography to Develop Conservation Strategies in the Chilean Emblematic Araucaria araucana. Scientific Reports, 11, Article No. 20504.
https://doi.org/10.1038/s41598-021-98662-w
[23]  Gallia, M. C., Echeverri Del Sarto, J., & Bongiovanni, G. A. (2021). Sustainable and Efficient Protocols for in Vitro Germination and Antioxidants Production from Seeds of the Endangered Species Araucaria araucana. Journal of Genetic Engineering and Biotechnology, 19, 181.
https://doi.org/10.1186/s43141-021-00280-6
[24]  Gallo, L., Izquierdo, F., & Sanguinetti, L. J. (2004). Araucaria araucana Forest Genetic Resources in Argentina. In B. Vincenti, W. Amaral, & B. Meilleur (Eds.), Challenges in Managing Forest Genetic Resources for Livelihoods: Examples from Argentina and Brazil (pp. 105-131). Bioversity International.
[25]  Gandullo, R. (2003). Fitosociología de los matorrales de “ñire” (Nothofagus antárctica), con bosque de “Pehuén” (Araucaria araucana) del Parque Provincial Copahue. I. Interpretación sintaxonómica. Candollea, 58, 163-181.
[26]  García Morábito, E., & Folguera, A. (2005). El alto de Copahue-Pino Hachado y la fosa de Loncopué: un comportameitno tectónico episódico, Andes neuquinos (37˚-39˚S). Revista Asociación Geológica Argentina, 60, 742-761.
[27]  González Díaz, E. F. (2005). Geomorfología de la región del volcán Copahue y sus adyacencias (centro-oeste del Neuquén). Revista Asociación Geológica Argentina, 60, 72-87.
[28]  González, M. E., Cortes, M., Gallo, L., Bekessy, S., Echeverría, C., Izquierdo, F., & Montaldo, P. (2013). Coníferas chilenas: Araucaria araucana. In C. Donoso (Ed.), Las especies arbóreas de los bosques Templados de Chile y Argentina: Autoecología (pp. 36-53). Marisa Cuneo Ediciones.
[29]  González, M. E., Muñoz, A. A., González-Reyes, Á., Christie, D. A., & Sibold, J. (2020). Fire History in Andean Araucaria-Nothofagus Forests: Coupled Influences of Past Human Land-Use and Climate on Fire Regimes in Northwest Patagonia. International Journal of Wildland Fire, 29, 649-660.
https://doi.org/10.1071/wf19174
[30]  Guo, Q., Su, Y., & Hu, T. (2023). Forest Dynamics Monitoring. In LiDAR Principles, Processing and Applications in Forest Ecology (pp. 379-406). Elsevier.
https://doi.org/10.1016/b978-0-12-823894-3.00012-8
[31]  Hadad, M. A., Arco Molina, J. G., & Roig, F. A. (2020). Dendrochronological Study of the Xeric and Mesic Araucaria araucana Forests of Northern Patagonia: Implications for Ecology and Conservation. In M. Pompa-García, & J. Camarero (Eds.), Latin American Dendroecology (pp. 283-315). Springer International Publishing.
https://doi.org/10.1007/978-3-030-36930-9_13
[32]  Hiltner, U., Bräuning, A., Gebrekirstos, A., Huth, A., & Fischer, R. (2016). Impacts of Precipitation Variability on the Dynamics of a Dry Tropical Montane Forest. Ecological Modelling, 320, 92-101.
https://doi.org/10.1016/j.ecolmodel.2015.09.021
[33]  Hoffmann, A., Sierra, M., Prosser, C., & Valle, M. (2001). Enciclopedia de los bosques chilenos. Gráfica Andes.
[34]  Hurley, M., Colavitto, B., Astort, A., Sagripanti, L., Rosselot, E. A., & Folguera, A. (2020). Mass-Wasting Deposits in the Domuyo Volcanic Center, Northern Neuquén Andes (Argentina): An Analysis of the Controlling Factors. Journal of South American Earth Sciences, 103, Article 102760.
https://doi.org/10.1016/j.jsames.2020.102760
[35]  Izquierdo, F. (2009). Análisis de la diversidad y diferenciación genética del Pehuén (Arau-caria araucana). Trabajo final para Lic. Thesis Escuela para Graduados Alberto Soriano. Universidad de Buenos Aires.
[36]  Kruger, L. M., Midgley, J. J., & Cowling, R. M. (1997). Resprouters vs Reseeders in South African Forest Trees; a Model Based on Forest Canopy Height. Functional Ecology, 11, 101-105.
https://doi.org/10.1046/j.1365-2435.1997.00064.x
[37]  Lawes, M. J., Macfarlane, D. M., & Eeley, H. A. C. (2004). Forest Landscape Pattern in the KwaZulu-Natal Midlands, South Africa: 50 Years of Change or Stasis? Austral Ecology, 29, 613-623.
https://doi.org/10.1111/j.1442-9993.2004.01396.x
[38]  Llano, J., Calabrese, S., Lamberti, M. C., Li Vigni, L., Brugnone, F., Sierra, D. et al. (2023). Hydrogeochemistry of Trace and Rare Earth Elements in the Caviahue-Copahue Volcanic Complex. Chemical Geology, 634, Article 121602.
https://doi.org/10.1016/j.chemgeo.2023.121602
[39]  Magurran, A. E. (2004). Measuring Biological Diversity. Blackwell Science.
[40]  Marchelli, P., & Gallo, L. A. (2004). The Combined Role of Glaciation and Hybridization in Shaping the Distribution of Genetic Variation in a Patagonian Southern Beech. Journal of Biogeography, 31, 451-460.
https://doi.org/10.1046/j.0305-0270.2003.01008.x
[41]  Marchelli, P., Sanguinetti, J., Izquierdo, F., Ziegenhagen, B., Martín, A., Mattioni, C. et al. (2020). Araucaria araucana and Salix humboldtiana: Two Species Highly Appreciated by the Society with Domestication Potential. In M. J. Pastorino, & P. Marchelli (Eds.), Low Intensity Breeding of Native Forest Trees in Argentina (pp. 175-214). Springer International Publishing.
https://doi.org/10.1007/978-3-030-56462-9_7
[42]  Mardones, D., & Scherson, R. A. (2023). Hotspots within a Hotspot: Evolutionary Measures Unveil Interesting Biogeographic Patterns in Threatened Coastal Forests in Chile. Botanical Journal of the Linnean Society, 202, 433-448.
https://doi.org/10.1093/botlinnean/boad002
[43]  Martínez Carretero, E. (2004). La provincia Fitogeográfica de La Payunia. Boletín de la Sociedad Argentina de Botánica, 39, 195-226.
[44]  Martínez Carretero, E. (2009). El Bosque Seco de Araucaria araucana en la Patagonia Ar-gentina. XXXII Jornadas Argentinas de Botánica, Córdoba.
[45]  Martínez Carretero, E. (2013). La Diagonal Árida Argentina: Entidad Bioclimática. In D. Pérez, E. Rovere, & E. Rodríguez Araujo (Eds.), Restauración Ecológica en la Diagonal Árida de la Argentina (pp. 14-31). Vázquez Massini Ed.
[46]  Martínez Carretero, E., & Roig, F. (1992). El paisaje en los estudios de vegetación. Un ensayo para la patagonia mendocina. Parodiana, 7, 165-178.
[47]  Martínez Pastur, G. J., Loto, D., Rodríguez-Souilla, J., Silveira, E. M. O., Cellini, J. M., & Peri, P. L. (2024). Different Approaches of Forest Type Classifications for Argentina Based on Functional Forests and Canopy Cover Composition by Tree Species. Resources, 13, Article 62.
https://doi.org/10.3390/resources13050062
[48]  Matte, A. L. L., Müller, S. C., & Becker, F. G. (2015). Forest Expansion or Fragmentation? Discriminating Forest Fragments from Natural Forest Patches through Patch Structure and Spatial Context Metrics. Austral Ecology, 40, 21-31.
https://doi.org/10.1111/aec.12178
[49]  Meilleur, A., Bouchard, A., & Bergeron, Y. (1994). The Relation between Geomorphology and Forest Community Types of the Haut-Saint-Laurent, Quebec. Vegetatio, 111, 173-192.
https://doi.org/10.1007/bf00040336
[50]  Montaldo, P. R. (1974). La bio-ecología de Araucaria araucana (Mol.) Koch. Instituto For-estal Latinoamericano de Investigación y Capacitación. Mérida, Venezuela. Boletín Téc-nico, 46-48, 1-55.
[51]  Moreno-Gonzalez, R., Giesecke, T., & Fontana, S. L. (2021). Fire and Vegetation Dynamics of Endangered Araucaria araucana Communities in the Forest-Steppe Ecotone of Northern Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, Article 110276.
https://doi.org/10.1016/j.palaeo.2021.110276
[52]  Müller, S. C., Overbeck, G. E., Blanco, C. C., de Oliveira, J. M., & Pillar, V. D. (2012). South Brazilian Forest-Grassland Ecotones: Dynamics Affected by Climate, Disturbance, and Woody Species Traits. In R. Myster (Ed.), Ecotones Between Forest and Grassland (pp. 167-187). Springer.
https://doi.org/10.1007/978-1-4614-3797-0_7
[53]  Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R., & Barrera, M. D. (2012). Fire History in the Araucaria araucana Forests of Argentina: Human and Climate Influences. International Journal of Wildland Fire, 22, 194-206.
https://doi.org/10.1071/wf11164
[54]  Nin, S., Antonetti, M., Burchi, G., Gori, M., & Bini, L. (2023). Validation by SSRs of Morphometric Markers for Genetic Variability in Araucaria araucana (molina) K. Koch. Forests, 14, Article 466.
https://doi.org/10.3390/f14030466
[55]  Ordaz-Hernández, A., Arriaga-Rivera, A., Enríquez, A. R., Rodríguez-Soto, C., Ca-dena-Vargas, E., Salomón Llanes, J. et al. (2023). Herramien-tas de gestión ambiental y territorial. Sociedad Hijos de Calimaya A. C., Calimaya de Díaz González, Calimaya, Estado de México. Primera Edición.
[56]  Palmero-Iniesta, M., Espelta, J. M., Gordillo, J., & Pino, J. (2020). Changes in Forest Landscape Patterns Resulting from Recent Afforestation in Europe (1990-2012): Defragmentation of Pre-Existing Forest versus New Patch Proliferation. Annals of Forest Science, 77, 1-15.
https://doi.org/10.1007/s13595-020-00946-0
[57]  Parchizadeh, J. (2020). The Simplest Way to Determine the Most Appropriate Diversity Indices in a Study Area. In H. Nangyal, & M. S. Khan (Eds.), Environmental Pollution, Biodiversity, and Sustainable Development (pp. 93-99). Apple Academic Press.
https://doi.org/10.1201/9780429265013-5
[58]  Pawlik, Ł. (2013). The Role of Trees in the Geomorphic System of Forested Hillslopes—A Review. Earth-Science Reviews, 126, 250-265.
https://doi.org/10.1016/j.earscirev.2013.08.007
[59]  Peña, O., & Gandullo, R. (2000). Estudio de la vegetación del Parque Copahue mediante la utilización de información satelital y SIG. Publicación en CD: Sociedad de Especialistas Latinoamericanos en Percepción Remota y Sistemas de Información Espacial.
[60]  Pert, P. L., Butler, J. R. A., Bruce, C., & Metcalfe, D. (2012). A Composite Threat Indicator Approach to Monitor Vegetation Condition in the Wet Tropics, Queensland, Australia. Ecological Indicators, 18, 191-199.
https://doi.org/10.1016/j.ecolind.2011.11.018
[61]  Pesce, A. (1989). Evolución volcano-tectónica del complejo efusivo Copahue-Caviahue y su modelo geotérmico preliminar. Revista Asociación Geológica Argentina, 44, 307-327.
[62]  Premoli, A. C., Kitzberger, T., & Veblen, T. T. (2000). Isozyme Variation and Recent Biogeographical History of the Long-Lived Conifer Fitzroya cupressoides. Journal of Biogeography, 27, 251-260.
https://doi.org/10.1046/j.1365-2699.2000.00402.x
[63]  Rafii, Z. A., & Dodd, R. S. (1998). Genetic Diversity among Coastal and Andean Natural Populations of Araucaria araucana (Molina) K. Koch. Biochemical Systematics and Ecology, 26, 441-451.
https://doi.org/10.1016/s0305-1978(97)00125-7
[64]  Rechene, C., Bava, J., & Mujica, R. (2003). Los bosques de Araucaria araucana en Chile y Argentina. Programa de Apoyo Ecológico (TOEB). Resp. Tampe, M., TWF-40s. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ).
[65]  Roig, F., Hadad, M., Moreno, C., Gandullo, R., Piraino, S., Martínez Carretero, E., Loyarte, M., Arco Molina, J., Bendini, M., Boninsegna, J., Peralta, I., Barrio, E., Bottero, R., Patón, D., Juaneda, E., Trevizor, T., & Duplancic, A. (2014). Hiatos de regeneración del bosque de Araucaria araucana en patagonia: Vinculaciones al uso de tierras y desertificación regional. Zonas Áridas, 15, 326-348.
[66]  Rossetto‐Harris, G., Wilf, P., Escapa, I. H., & Andruchow‐Colombo, A. (2020). Eocene Araucaria Sect. Eutacta from Patagonia and Floristic Turnover during the Initial Isolation of South America. American Journal of Botany, 107, 806-832.
https://doi.org/10.1002/ajb2.1467
[67]  Sanguinetti, J., & Kitzberger, T. (2009). Efectos de la producción de semillas y la heterogeneidad vegetal sobre la supervivencia de semillas y el patrón espacio-temporal de establecimiento de plántulas en Araucaria araucana. Revista Chilena de Historia Natural, 82, 319-335.
https://doi.org/10.4067/s0716-078x2009000300001
[68]  Sepúlveda-Espinoza, F., Bertin-Benavides, A., Hasbun, R., Toro-Nunez, O., Varas-Myrik, A., Alarcón, D., & Guillemin, M. (2022). Impact of Pleistocene Glaciations and Environmental Gradients on Embothrium coccineum Genetic Structure. Authorea Preprints.
[69]  Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Press, 117 p.
[70]  Souza, A. F. (2021). A Review of the Structure and Dynamics of Araucaria Mixed Forests in Southern Brazil and Northern Argentina. New Zealand Journal of Botany, 59, 2-54.
https://doi.org/10.1080/0028825x.2020.1810712
[71]  Souza-Alonso, P., Saiz, G., García, R. A., Pauchard, A., Ferreira, A., & Merino, A. (2022). Post-Fire Ecological Restoration in Latin American Forest Ecosystems: Insights and Lessons from the Last Two Decades. Forest Ecology and Management, 509, Article 120083.
https://doi.org/10.1016/j.foreco.2022.120083
[72]  Stefenon, V. M., Klabunde, G., Lemos, R. P. M., Rogalski, M., & Nodari, R. O. (2019). Phylogeography of Plastid DNA Sequences Suggests Post-Glacial Southward Demographic Expansion and the Existence of Several Glacial Refugia for Araucaria Angustifolia. Scientific Reports, 9, Article No. 2752.
https://doi.org/10.1038/s41598-019-39308-w
[73]  Tagliari, M. M., Levis, C., Flores, B. M., Blanco, G. D., Freitas, C. T., Bogoni, J. A. et al. (2021). Collaborative Management as a Way to Enhance Araucaria Forest Resilience. Perspectives in Ecology and Conservation, 19, 131-142.
https://doi.org/10.1016/j.pecon.2021.03.002
[74]  Templeton, A. R., Robertson, R. J., Brisson, J., & Strasburg, J. (2001). Disrupting Evolutionary Processes: The Effect of Habitat Fragmentation on Collared Lizards in the Missouri Ozarks. Proceedings of the National Academy of Sciences of the United States of America, 98, 5426-5432.
https://doi.org/10.1073/pnas.091093098
[75]  Tunstall, C., & Folguera, A. (2005). Control estructural en el desarrollo de una concentración anómala de calderas en los Andes de Neuquén: Complejo volcánico Pino Hachado (38˚ 30'S y 71˚O). Revista Asociación Geológica Argentina, 60, 731-741.
[76]  Vigide, N., Yagupsky, D., Barcelona, H., Agusto, M., & Caselli, A. (2023). Understanding the Caviahue-Copahue Volcanic Complex through Kinematic Solutions, Paleotensors and Analogue Modelling. Journal of South American Earth Sciences, 121, Article 104136.
https://doi.org/10.1016/j.jsames.2022.104136
[77]  Villagrán, M. C., & Armesto, J. (2005). Fitogeografía histórica de la Cordillera de la Costa de Chile. In C. Smith Ramírez, J. Armesto, & C. Valdovinos (Eds.), Historia, biodiversidad y ecología de los bosques costeros de Chile (pp. 99-116). Editorial Universitaria.
[78]  Zambrano, J., Cordeiro, N. J., Garzon-Lopez, C., Yeager, L., Fortunel, C., Ndangalasi, H. J. et al. (2020). Investigating the Direct and Indirect Effects of Forest Fragmentation on Plant Functional Diversity. PLOS ONE, 15, e0235210.
https://doi.org/10.1371/journal.pone.0235210
[79]  Zuloaga, F. O., Morrone, O., & Belgrano, M. J. (2008). Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). In Monographs in Systematic Botany from the Missouri Botanical Garden (Vol. 107, i-xcvi, 1-3348).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133