|
不同纤维对高强抗裂粘结砂浆的性能影响研究
|
Abstract:
本文选用钢纤维和聚丙烯纤维两种常见纤维开展试验,通过测试砂浆的力学性能、粘结劈拉强度等指标,探究纤维对砂浆性能的影响规律及其作用机理。结果表明,适量掺入纤维可显著提升砂浆的综合性能。当钢纤维掺量为1.5%时,砂浆的28天抗压、抗折强度分别较空白组提高8.35%、87.00%,力学性能增强效果最佳。钢纤维掺量为2.0%时,砂浆粘结劈拉强度达到峰值,相比空白组提升207.84%。与钢纤维相比,聚丙烯纤维对砂浆的性能改善幅度较小,掺量为0.2%时,砂浆的抗压及抗折强度达到最大值。分析可知,纤维主要通过桥联作用和阻裂作用改善砂浆性能,但过量掺入会引起纤维团聚,导致砂浆基体缺陷增多、性能降低。此外,钢纤维可增大砂浆–混凝土界面摩擦阻力和机械咬合力,从而提高砂浆粘结性能。
In this paper, two common fibers, steel fiber and polypropylene fiber, are selected to carry out experiments. By testing the mechanical properties of mortar, bond splitting strength and other indicators, the influence of fiber on the performance of mortar and its mechanism are explored. The results show that the appropriate amount of fiber can significantly improve the comprehensive properties of mortar. When the steel fiber content is 1.5%, the 28-day compressive strength and flexural strength of mortar are increased by 8.35% and 87.00%, respectively, compared with the blank group, and the mechanical properties are enhanced best. When the steel fiber content is 2.0%, the adhesive splitting tensile strength of mortar reaches the peak value, which is 207.84% higher than that of blank group. Compared with steel fiber, polypropylene fiber can improve the performance of mortar less. When the content is 0.2%, the compressive strength and flexural strength of mortar reach the maximum. The analysis shows that fiber can improve the performance of mortar mainly through bridging and crack inhibition, but excessive incorporation will cause fiber agglomeration, resulting in increased defects and reduced performance of mortar matrix. In addition, steel fiber can increase the friction resistance and mechanical bite force of mortar - concrete interface, so as to improve the bond property of mortar.
[1] | 胡晨宇, 朱伟明, 柴宠舂, 等. 装配式ALC砌块轻质隔墙专用粘结砂浆性能研究与应用[J]. 新型建筑材料, 2024, 51(4): 32-35+40. |
[2] | 蒋喆峰. 高韧性低收缩高抗裂粘结砂浆的制备与性能研究[D]: [硕士学位论文]. 南京: 东南大学, 2020. |
[3] | 仇步云, 管秀发, 张明亮, 等. 聚丙烯纤维水泥砂浆性能及工程应用研究[J]. 居舍, 2023(6): 141-143+177. |
[4] | 任亮, 方蕈, 王凯, 等. 超高性能混凝土与水泥基材料界面粘结性研究进展[J]. 硅酸盐通报, 2019, 38(7): 2087-2094. |
[5] | 贾方方, 贺奎, 王万金, 等. 活性粉末混凝土与普通混凝土黏结劈拉性能[J]. 铁道学报, 2016, 38(3): 127-132. |
[6] | 李英丁, 艾秀科, 贾陆军, 等. 聚丙烯纤维对高强砂浆的性能影响研究[J]. 合成纤维, 2020, 49(6): 53-55. |
[7] | 万奕杰, 杨畅, 代超越, 等. 不同类型纤维增强水泥砂浆力学性能研究[J]. 江苏建筑, 2023(4): 121-125. |
[8] | 张源, 王宝民. 聚丙烯纤维增强混凝土的力学和耐久性能研究[J]. 江西建材, 2023(7): 35-37. |
[9] | 李龙梓, 曹鑫铖, 叶国林, 等. 混杂纤维混凝土的工作性、力学性能和弯曲韧性研究[J]. 混凝土与水泥制品, 2024(2): 61-64. |
[10] | 程红强, 刘国龙, 高丹盈. 钢纤维混凝土与老混凝土粘结剪切性能试验研究[J]. 水力发电学报, 2013, 32(4): 177-181+192. |
[11] | 王欣, 吴楠, 刘国安, 等. 混杂纤维活性粉末混凝土与普通混凝土界面黏结性能研究[J]. 混凝土与水泥制品, 2022(3): 61-65. |
[12] | 范银波. 纤维混凝土与普通混凝土粘结性能和抗冲击性能研究[D]: [硕士学位论文]. 南宁: 广西大学, 2022. |