Plantain banana is an important cash crop that serves as stable food for millions of people around the world and contributes to income generation. Indeed, they provide a major staple food crop for millions of people and play an important role in the social fabric of many rural communities. Plantain banana cultivation encounters major problem of seedlings unavailability that are essential for the creation of new plantations, as well as parasitic constraints. Mycosphaerellafijiensis is the main pathogen attack constraints of banana plant responsible of black Sigatoka disease, and viruses, which can severely reduce the photosynthetic leaf area, leading to banana production losses of more than 80% in plantations with soil fertility problems. The repeated use of synthetic input is the origin of contamination to the environment, different pollution sources of plants and human health, as well as resistance to some strains of pathogens and plant fertilization problems over time. Recent works carried out in nursery have shown that vivoplants of plantains treated with biostimulants based on natural products notably Tithoniadiversifolia biopromote good growth and less susceptibility to M. fijiensis. Indeed, an increase in agromorphological characteristics, good accumulation of growth and defense biomarkers was also observed. In this context, Tithonia diversifolia is shown to be involved in the stimulatory effect mechanism of growth promotion and defensive reaction of plantain vivoplants against various pathogens and it is suggested to be acting as a vital stimulator. This article reviews the current state of knowledge on plantain banana cultivation constraints and on the potential of Tithonia diversifolia in relation with its different stimulatory effects on plantain vivoplants.
References
[1]
FAO (2024) Food and Agriculture Organization of the United Nations. FAO Statis-tics: Plantains and Cooking Bananas. https://www.fao.org/faostat/en/#rankings/countries_by_commodity
[2]
Ewané, C.A., Ndongo, F., Ngoula, K., Tayo, P.M.T., Opiyo, S.O. and Boudjeko, T. (2019) Potential Biostimulant Effect of Clam Shells on Growth Promotion of Plantain PIF Seedlings (var. Big Ebanga & Batard) and Relation to Black Sigatoka Disease Susceptibility. American Journal of Plant Sciences, 10, 1763-1788. https://doi.org/10.4236/ajps.2019.1010125
[3]
Kwa, M., Temple, L. and Fogaing, R. (2019) Le bananier-plantain. Enjeux socio-économiques et techniques. Éditions Quæ, CTA, Presses agronomiques de Gembloux, 42 p.
[4]
Annie Ewané, C., Chillet, M., Castelan, F., Brostaux, Y., Lassois, L., Essoh Ngando, J., et al. (2013) Impact of the Extension of Black Leaf Streak Disease on Banana Susceptibility to Post-Harvest Diseases. Fruits, 68, 351-365. https://doi.org/10.1051/fruits/2013081
[5]
Onautshu, O.D. (2013) Caractérisation des populations de Mycosphaerellafijiensis et épidémiologie de la cercosporiose noire du bananier (Musa spp.) dans la région de Kisangani (RDC). Doctoral Dissertation, UCL-Université Catholique de Louvain, 243 p.
[6]
Gauhl, F., Pasberg-Gauhl, C., Bopda-Waffo, A., d’A. Hughes, J. and Chen, J.S. (1999) Occurrence of Banana Streak Badnavirus on Plantain and Banana in 45 Villages in Southern Cameroon, Central Africa. Journal of Plant Diseases and Protection, 106, 174-180.
[7]
Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., et al. (2011) Solutions for a Cultivated Planet. Nature, 478, 337-342. https://doi.org/10.1038/nature10452
[8]
Mobambo, K.N., Gauhl, F., Pasberg-Gauhl, C. and Zuofa, K. (1996) Season and Plant Age Effect Evaluation of Plantain for Response to Black Sigatoka Disease. Crop Protection, 15, 609-614. https://doi.org/10.1016/0261-2194(95)00144-1
[9]
Kidane, T.T. and Steven, W. (2019) An Overview Use and Impact of Organic and Synthetic Farm Inputs in Developed and Developing Countries. African Journal of Food Agriculture Nutrition and Development, 19, 14517-14540. https://doi.org/10.18697/ajfand.86.15825
[10]
Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., et al. (2012) Global Food Security, Biodiversity Conservation and the Future of Agricultural Intensification. Biological Conservation, 151, 53-59. https://doi.org/10.1016/j.biocon.2012.01.068
[11]
Li, Y., Zhou, W., Hu, B., Min, M., Chen, P. and Ruan, R.R. (2011) Integration of Algae Cultivation as Biodiesel Production Feedstock with Municipal Wastewater Treatment: Strains Screening and Significance Evaluation of Environmental Factors. Bioresource Technology, 102, 10861-10867. https://doi.org/10.1016/j.biortech.2011.09.064
[12]
Jaulneau, V. (2010) Caractérisation moléculaire d’un extrait d’algues vertes, stimulateur des défenses des plantes contre les agents pathogènes. Thèse de doctorat, Université de Toulouse, 92 p.
[13]
Pusztahelyi, T., Holb, I.J. and Pócsi, I. (2015) Secondary Metabolites in Fungus-Plant Interactions. Frontiers in Plant Science, 6, Article No. 573. https://doi.org/10.3389/fpls.2015.00573
[14]
Kandungu, J., Anjarwalla, P., Mwaura, L., Ofori, D.A., Jammadass, R., Stevenson, P.C. and Smith, P. (2013) Pesticidal Plant Leaflet. Tithonia diversifolia (Hemsl.) A. Gray. Kew Royal Botanic Gardens, World Agroforestry Centre, 12, 34-45.
[15]
Diby, Y.K.S., Tahiri, Y.A., Akpesse, A.A.M., Tra, B. and Kouassi, K.P. (2015) Evaluation of the Insecticidal Effect of Aqueous Extract of Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae) on Termites (NERICA 1) in a Rice Cultivation in the Center of Côte d’Ivoire. Journal of Animal and Plant Sciences, 25, 3966-3976.
[16]
Tatsegouock, R.N., Ewané, C.A., Meshuneke, A. and Boudjeko, T. (2020) Plantain Bananas PIF Seedlings Treatment with Liquid Extracts of Tithonia diversifolia Induces Resistance to Black Sigatoka Disease. American Journal of Plant Sciences, 11, 653-671. https://doi.org/10.4236/ajps.2020.115049
[17]
Chagas‐Paula, D.A., Oliveira, R.B., Rocha, B.A. and Da Costa, F.B. (2012) Ethnobotany, Chemistry, and Biological Activities of the Genus tithonia (Asteraceae). Chemistry & Biodiversity, 9, 210-235. https://doi.org/10.1002/cbdv.201100019
[18]
Farni, Y., Prijono, S., Suntari, R. and Handayanto, E. (2021) Pattern of N Mineralization and Nutrient Uptake of Tithonia diversifolia and Saccharum Officinarum Leaves in Sandy Loam Soil. Indian Journal of Agricultural Research, 56, 65-69. https://doi.org/10.18805/ijare.a-626
[19]
Aboyeji, C.M. (2021) Effects of Application of Organic Formulated Fertiliser and Composted Tithonia diversifolia Leaves on the Growth, Yield and Quality of Okra. Biological Agriculture & Horticulture, 38, 17-28. https://doi.org/10.1080/01448765.2021.1960604
[20]
Odeyemi, A.T., Agidigbi, T.S., Adefemi, S.O. and Fasuan, S.O. (2014) Antibacterial Activities of Crude Extracts of Tithonia diversifolia against Common Environmental Pathogenic Bacteria. Experiment, 20, 1421-1426.
[21]
Jama, B., Palm, C.A., Buresh, R.J., Niang, A., Gachengo, C., Nziguheba, G., et al. (2000) Tithonia diversifolia as a Green Manure for Soil Fertility Improvement in Western Kenya: A Review. Agroforestry Systems, 49, 201-221. https://doi.org/10.1023/a:1006339025728
[22]
Oloo, M. and Menge, D. (2020) Phytochemical Screening and Antimicrobial Activity of Crude Extract of Tithonia diversifolia. Open Journal of Biological Sciences, 5, 30-33. https://doi.org/10.17352/ojbs.000021
[23]
Ewané C.A., Ange, M.C., Felix, N.E. and Thaddée, B. (2020) Influence of Clam Shells and Tithonia diversifolia Powder on Growth of Plantain PIF Seedlings (var. French) and Their Sensitivity to Mycosphaerellafijiensis. African Journal of Agricultural Research, 15, 393-411. https://doi.org/10.5897/ajar2019.14486
[24]
Ewané, C.A., Meshuneke, A., Tatsegouock, R.N. and Boudjeko, T. (2020) Vertical Layer of Tithonia diversifolia Flakes Amendment Improves Plantain Seedling Performance. American Journal of Agricultural Research, 5, Article No. 95.
[25]
Ewané, C.A., Mbanya, N.T. and Boudjeko, T. (2020) Tithonia diversifolia Leaves and Stems Use as Substrate Amendment Promote the Growth of Plantain Vivoplants in the Nursery. Agricultural Sciences, 11, 849-859. https://doi.org/10.4236/as.2020.119054
[26]
Ewané, C.A., Tatsegouock, R.N., Meshuneke, A. and Niemenak, N. (2020) Field Efficacy of a Biopesticide Based on Tithonia diversifolia against Black Sigatoka Disease of Plantain (Musa Spp., Aab). Agricultural Sciences, 11, 730-743. https://doi.org/10.4236/as.2020.118048
[27]
Meshuneke, A., Ewané, C.A., Tatsegouock, R.N. and Boudjeko, T. (2020) Tithonia diversifolia Mulch Stimulates the Growth of Plantain PIF Seedlings and Induces a Less Susceptibility to Mycosphaerellafijiensis in the Nursery. American Journal of Plant Sciences, 11, 672-692. https://doi.org/10.4236/ajps.2020.115050
[28]
Lassoudière, A. (2007) Le bananier et sa culture. Editions Quae, 383 p.
[29]
Dépigny, S., Tchotang, F., Talla, M., Fofack, D., Essomé, D., Ebongué, J., et al. (2018) The “Plantain-Optim” Dataset: Agronomic Traits of 405 Plantains Every 15 Days from Planting to Harvest. Data in Brief, 17, 671-680. https://doi.org/10.1016/j.dib.2018.01.065
[30]
Opata, J., Skala, J., Hegele, M., Dzomeku, B.M. and Wünsche, J. (2020) Macropropagation of Banana (Musa AAA): Responses to Hormonal and Mechanical Corm Manipulation. Fruits, 75, 78-83. https://doi.org/10.17660/th2020/75.2.3
[31]
Robinson, J.C. and Saúco, V.G. (2010) Bananas and Plantains. 2nd Edition, CABI, 311 p.
[32]
Singh, H.P., Uma, S., Selvarajan, R. and Karihaloo, J.L. (2011) Micropropagation for Production of Quality Banana Planting Mater in Asia-Pacific, Asia-Pacific Consorti-um on Agricultural Biotechnology (APCoAB), New Delhi, India. 255 p.
[33]
Pillay, M. and Tenkouano, A. (2011) Banana Breeding: Progress and Challenges. CRC Press, 383 p. https://doi.org/10.1201/b10514
[34]
Muthusamy, M., Uma, S., Backiyarani, S., Saraswathi, M.S. and Chandrasekar, A. (2016) Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress. Frontiers in Plant Science, 7, Article No. 1609. https://doi.org/10.3389/fpls.2016.01609
[35]
Singh, H.P., Uma, S., Selvarajan, R. and Karihaloo, J.L. (2011) Micropropagation for Production of Quality Banana Planting Material in Asia-Pacific. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB), 92 p.
[36]
Kwa, M. (2002) New Horticultural Technique of Mass Production of Bananas the PIF Technique. CARBAP technical Data Sheet. CARBAP, 2 p.
[37]
Lefranc, L.M., Lescot, T., Staver, C., Kwa, M., Michel, I., Nkapnang, I., et al. (2010) Conditions of Adoption of New Technique of Vegetative Multiplication (PIF) in Cameroon: Impact on the Diffusion of New Banana and Plantain Cultivars. Harnessing International Partnerships to Increase Research Impact, ISHS, Montpellier, 727-733.
[38]
Tumuhimbise, R. and Talengera, D. (2018) Improved Propagation Techniques to Enhance the Productivity of Banana (Musa Spp.). Open Agriculture, 3, 138-145. https://doi.org/10.1515/opag-2018-0014
[39]
Arias, P. (2003) The World Banana Economy. Food & Agriculture Organization, Vol. 1, 1985-2002.
[40]
Ortiz, R. and Swennen, R. (2014) From Crossbreeding to Biotechnology-Facilitated Improvement of Banana and Plantain. Biotechnology Advances, 32, 158-169. https://doi.org/10.1016/j.biotechadv.2013.09.010
[41]
Soares, J.M.S., Rocha, A.J., Nascimento, F.S., Santos, A.S., Miller, R.N.G., Ferreira, C.F., et al. (2021) Genetic Improvement for Resistance to Black Sigatoka in Bananas: A Systematic Review. Frontiers in Plant Science, 12, Article ID: 657916. https://doi.org/10.3389/fpls.2021.657916
[42]
Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., Raymaekers, D., et al. (2020) Detection of Banana Plants and Their Major Diseases through Aerial Images and Machine Learning Methods: A Case Study in DR Congo and Republic of Benin. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 110-124. https://doi.org/10.1016/j.isprsjprs.2020.08.025
[43]
Das, T., Mondal, S., Mishra, D.K. and Bhattacharyya, S. (2016) Development of SCAR Marker for Screening Sigatoka-Leafspot Resistance in Banana Genotypes. Indian Journal of Genetics and Plant Breeding (The), 76, 69-74. https://doi.org/10.5958/0975-6906.2016.00010.9
[44]
Churchill, A.C.L. (2010) Mycosphaerellafijiensis, the Black Leaf Streak Pathogen of Banana: Progress towards Understanding Pathogen Biology and Detection, Disease Development, and the Challenges of Control. Molecular Plant Pathology, 12, 307-328. https://doi.org/10.1111/j.1364-3703.2010.00672.x
[45]
Alakonya, A.E., Kimunye, J., Mahuku, G., Amah, D., Uwimana, B., Brown, A., et al. (2018) Progress in Understanding Pseudocercospora Banana Pathogens and the Development of Resistant Musa Germplasm. Plant Pathology, 67, 759-770. https://doi.org/10.1111/ppa.12824
[46]
Essis, B., Kobenan, K., Traoré, S., Koné, D. and Yatty, J. (2010) Sensibilité au laboratoire de Mycosphaerellafijiensis responsable de la cercosporiose noire des bananiers vis-à-vis de fongicides couramment utilisés dans les bananeraies ivoiriennes. Journal of Animal & Plant Sciences, 7, 822-833.
[47]
Ajao, A.A. and Moteetee, A.N. (2017) Tithonia diversifolia (hemsl) A. Gray. (Asteraceae: Heliantheae), an Invasive Plant of Significant Ethnopharmacological Importance: A Review. South African Journal of Botany, 113, 396-403. https://doi.org/10.1016/j.sajb.2017.09.017
[48]
Kato-Noguchi, H. (2020) Involvement of Allelopathy in the Invasive Potential of Tithonia diversifolia. Plants, 9, Article No. 766. https://doi.org/10.3390/plants9060766
[49]
Tièbre, M.S., N’dja, J.K., Yao, J.C.K. and Edouard, K.N. (2012) Etude de la biologie reproductive de Tithonia diversifolia (hemsl.) Gray (Astraceae): Espèce non indigène invasive en Côte d’ivoire. Journal of Asian Scientific Research, 2, 200-211.
[50]
Kaho, F., Yemefack, M., Feujio-Teguefouet, P. and Tchantchaouang, J.C. (2011) Effet combiné des feuilles de Tithonia diversifolia et des engrais inorganiques sur les rendements du maïs et les propriétés d’un sol ferralitique au Centre Cameroun. Tropicultura, 29, 39-45.
[51]
Umar, O.B., Obukohwo, E.E., Bolaji, S.Z. and Juliana, L.B. (2015) Growth and Yield Attributes of Zea mays L. and Vigna unguiculata L. (walp) to Different Densities of Tithonia diversifolia (Hemsl.) A. Gray. AgronomskiGlasnik: Glasilo HrvatskogAgronomskogDruštva, 77, 207-218.
[52]
John-Dewole, J. (2013) Phytochemical and Antimicrobial Studies of Extracts from the Leaves of Tithonia diversifolia for Pharmaceutical Importance. IOSR Journal of Pharmacy and Biological Sciences, 6, 21-25. https://doi.org/10.9790/3008-0642125
[53]
Olayinka, E., Ore, A., Adeyemo, O., Ola, O., Olotu, O. and Echebiri, R. (2015) Quercetin, a Flavonoid Antioxidant, Ameliorated Procarbazine-Induced Oxidative Damage to Murine Tissues. Antioxidants, 4, 304-321. https://doi.org/10.3390/antiox4020304
[54]
Gu, J., Gills, J.J., Park, E.J., Mata-Greenwood, E., Hawthorne, M.E., Axelrod, F., et al. (2002) Sesquiterpenoids from Tithonia diversifolia with Potential Cancer Chemopreventive Activity. Journal of Natural Products, 65, 532-536. https://doi.org/10.1021/np010545m
[55]
Mihajilov-Krstev, T., Jovanović, B., Jović, J., Ilić, B., Miladinović, D., Matejić, J., et al. (2014) Antimicrobial, Antioxidative, and Insect Repellent Effects of Artemisia Absinthium Essential Oil. Planta Medica, 80, 1698-1705. https://doi.org/10.1055/s-0034-1383182
[56]
Rizkawati, M. (2021) Potential of Tithonia diversifolia Hemsley A. Gray (Kembang Bulan) Leaf Extract as Anti-Cancer Agents. Biology, Medicine, & Natural Product Chemistry, 10, 87-91. https://doi.org/10.14421/biomedich.2021.102.87-91
[57]
Kasongo, L., Mwamba, M., Tshipoya, M., Mukalay, M., Useni, S., Mazinga, K., et al. (2013) Réponse de la culture de soja (Glycine max L. (Merril) à l’apport des biomasses vertes de Tithonia diversifolia (Hemsley) A. Gray comme fumure organique sur un Ferralsol à Lubumbashi, R.D. Congo. Journal of Applied Biosciences, 63, 4727-4735. https://doi.org/10.4314/jab.v63i1.87247
[58]
Bilong, E.G., Ajebesone, F.N., Abossolo-Angue, M., Madong, B.À., Bonguen, S.M.N. and Bilong, P. (2017) Effets des biomasses vertes de Tithonia diversifolia et des engrais minéraux sur la croissance, le développement et le rendement du manioc (Manihot esculenta Crantz) en zone forestière du Cameroun. International Journal of Biological and Chemical Sciences, 11, 1716-1726. https://doi.org/10.4314/ijbcs.v11i4.24
[59]
Nyami, B.L., Sudi, C.K. and Lejoly, J. (2016) Effet du biochar et des feuilles de Tithonia diversifolia combiné à l’engrais minéral sur la culture du maïs (Zea mays L.) et les propriétés d’un sol ferralitique à Kinshasa (RDC). Biotechnology, Agronomy, Society and Environment, 20, 57-67. https://doi.org/10.25518/1780-4507.12592
[60]
Tshinyangu, K.A., Mutombo, T.J.M., Kayombo, M.A., Nkongolo, M.M., Yalombe, N.G. and Cibanda, M.J. (2017) Effet comparé de Chromolaena odorata King et H.E. Robins, et Tithonia diversifolia (Hemsl.) A. Gray sur la culture du Maïs (Zea mays L) à Mbujimayi (RD. Congo). Journal of Applied Biosciences, 112, 10996-11004. https://doi.org/10.4314/jab.v112i1.4
[61]
Kerebba, N., Oyedeji, A.O., Byamukama, R., Kuria, S.K. and Oyedeji, O.O. (2019) Pesticidal Activity of Tithonia diversifolia (Hemsl.) A. Gray and Tephrosia vogelii (Hook F.); Phytochemical Isolation and Characterization: A Review. South African Journal of Botany, 121, 366-376. https://doi.org/10.1016/j.sajb.2018.11.024
[62]
Jatto, E.O., Asia, I.O., Egbon, E.E., Otutu, J.O., Chukwuedo, M.E., Ewansiha, C.J. (2010) Treatment of Waste Water from Food Industry Using Snail Shell. Academica Arena, 2, 32-36.
[63]
Desbriéres, J. (2000) Chitine et chitosane. Utilisation directe. L’actualité chimique, 6 p.
[64]
Téné, T.P.M., Ewané, C.A., Effa, O.P. and Boudjeko, T. (2017) Effet du chitosane et des coquilles d’huître sur la croissance des plants de cacaoyers et la résistance vis-à-vis Phytophthora megakarya agent responsable de la pourriture brune des cabosses de cacao. African Journal of Plant Science, 11, 331-340.