|
基于“扬帆远航”模型的帆船路径动态调整策略研究
|
Abstract:
本文基于第五版《数学模型》第二章第九节“扬帆远航”模型,探究帆船在航行过程中如何调整航向和帆的朝向以实现最快速度到达终点。首先分析了帆船在东北和东南两个方向上受到风力的作用,并建立相应的数学模型描述航向、帆的朝向与帆船速度之间的关系。其次,求解了东北和东南方向最优的航向和帆的朝向,同时通过数值计算建立了航向和帆的朝向与帆船转东南方向夹角之间的关系。最后,确定了该夹角的取值范围及使帆船到达终点用时最少的最优夹角。
This article is based on the “Sailing Far Away” model in Section 9 of Chapter 2 of the fifth edition of “Mathematical Models”, exploring how sailboat adjusts its heading and sail orientation during navigation to achieve the fastest speed to reach the destination. Firstly, it analyzes the effect of wind on sailboat in the northeast and southeast directions and establishes corresponding mathematical models to describe the relationship between heading, sail orientation and boat speed. Secondly, the optimal heading and sail orientation in the northeast and southeast directions were solved, and establishes the relationship between heading, sail orientation, and the angle at which the boat turns towards the southeast direction through numerical calculations. Finally, it defines the range of the angle and identifies the optimal angle that minimizes the time for the sailboat to reach the destination.
[1] | 谭永基, 蔡志杰, 俞文. 数学模型[M]. 第3版. 上海: 复旦大学出版社, 2019. |
[2] | 鲍敬艳, 任洁, 林道荣. 帆船航行最佳路径选取[J]. 数学的实践与认识, 2012, 42(5): 107-113. |
[3] | 杜明树. 无人帆船路径规划研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2017. |
[4] | 刘如磊, 黄朝明, 安云圣, 等. 帆船最小回转直径下风帆攻角研究[J]. 计算机应用与软件, 2022, 39(8): 76-81. |
[5] | 姜启源, 谢金星, 叶俊. 数学模型[M]. 第5版. 北京: 高等教育出版社, 2018: 50-52. |