|
高海拔低压低氧环境对认知功能影响的研究进展
|
Abstract:
高海拔地区有着低压低氧、日照时间长的特点。长期生活在高海拔地区,随着慢性低氧血症的出现,部分人群可能会出现反应迟钝、记忆力减退等认知功能减退的症状。低压低氧环境下,易诱发睡眠障碍、抑郁症等疾病,除此之外它还可导致神经递质异常、神经元凋亡和氧化应激,这些都可能与认知功能的改变有关。本文综述了高海拔低压低氧环境对人们认知功能的影响及相关机制,以期为高海拔环境下认知障碍的预防与治疗研究提供新思路。
High altitude areas are characterized by low pressure, low oxygen and long hours of sunlight. Living at high altitude for a long time, with the emergence of chronic hypoxemia, some people may experience symptoms of cognitive impairment such as slow response and memory loss. Hypobaric hypoxia environment is prone to induce sleep disorders, depression and other diseases, in addition to which it can lead to abnormal neurotransmitters, neuronal apoptosis and oxidative stress, all of which may be associated with the changes of cognitive function. This paper reviews the effects of high-altitude hypobaric hypoxia environment on people’s cognitive function and the related mechanisms, in order to provide new ideas for the prevention and treatment of cognitive impairment in high altitude environment.
[1] | Ni, X., Wu, F., Song, J., An, L., Jiang, Q., Bai, T., et al. (2022) Chinese Expert Consensus on Assessment of Cognitive Impairment in the Elderly. Aging Medicine, 5, 154-166. https://doi.org/10.1002/agm2.12222 |
[2] | Liu, S., Wang, F., Zhang, C., Zhang, Q., Dang, Z., Ng, C.H., et al. (2022) Cognitive Impairment and Its Associated Factors in Older Adults Living in High and Low Altitude Areas: A Comparative Study. Frontiers in Psychiatry, 13, Article ID: 871414. https://doi.org/10.3389/fpsyt.2022.871414 |
[3] | Zhu, D., Zhang, M., He, B., Wan, Y., Wang, L. and Gao, F. (2022) The Role of Sex and Ovarian Hormones in Hippocampal Damage and Cognitive Deficits Induced by Chronic Exposure to Hypobaric Hypoxia. Frontiers in Neuroscience, 16, Article ID: 953417. https://doi.org/10.3389/fnins.2022.953417 |
[4] | Terraneo, L. and Samaja, M. (2017) Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. International Journal of Molecular Sciences, 18, Article No. 1914. https://doi.org/10.3390/ijms18091914 |
[5] | Zhang, Z., Sun, Y., Yuan, Z., Wang, L., Dong, Q., Zhou, Y., et al. (2022) Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4163188. https://doi.org/10.1155/2022/4163188 |
[6] | Fogwe, L.A., Reddy, V. and Mesfin, F.B. (2024) Neuroanatomy, Hippocampus. StatPearls Publishing LLC, Treasure Island. |
[7] | Calabresi, P., Castrioto, A., Di Filippo, M. and Picconi, B. (2013) New Experimental and Clinical Links between the Hippocampus and the Dopaminergic System in Parkinson’s Disease. The Lancet Neurology, 12, 811-821. https://doi.org/10.1016/s1474-4422(13)70118-2 |
[8] | Churchyard, A. and Lees, A.J. (1997) The Relationship between Dementia and Direct Involvement of the Hippocampus and Amygdala in Parkinson’s Disease. Neurology, 49, 1570-1576. https://doi.org/10.1212/wnl.49.6.1570 |
[9] | Lisman, J., Buzsáki, G., Eichenbaum, H., Nadel, L., Ranganath, C. and Redish, A.D. (2017) Viewpoints: How the Hippocampus Contributes to Memory, Navigation and Cognition. Nature Neuroscience, 20, 1434-1447. https://doi.org/10.1038/nn.4661 |
[10] | Moriguchi, T., Harii, N., Goto, J., Harada, D., Sugawara, H., Takamino, J., et al. (2020) A First Case of Meningitis/Encephalitis Associated with SARS-Coronavirus-2. International Journal of Infectious Diseases, 94, 55-58. https://doi.org/10.1016/j.ijid.2020.03.062 |
[11] | Zhang, Y.Q., Zhang, W.J., Liu, J.H. and Ji, W.Z. (2022) Effects of Chronic Hypoxic Environment on Cognitive Function and Neuroimaging Measures in a High-Altitude Population. Frontiers in Aging Neuroscience, 14, Article ID: 788322. https://doi.org/10.3389/fnagi.2022.788322 |
[12] | Quattrocchi, C.C., Longo, D., Delfino, L.N., Errante, Y., Aiello, C., Fariello, G., et al. (2012) MR Differential Diagnosis of Acute Deep Grey Matter Pathology in Paediatric Patients. Pediatric Radiology, 43, 743-761. https://doi.org/10.1007/s00247-012-2491-2 |
[13] | Wang, X., Wei, W., Yuan, F., Li, S., Lin, J. and Zhang, J. (2018) Regional Cerebral Blood Flow in Natives at High Altitude: An Arterial Spin Labeled MRI Study. Journal of Magnetic Resonance Imaging, 48, 708-717. https://doi.org/10.1002/jmri.25996 |
[14] | Braunsdorf, M., Blazquez Freches, G., Roumazeilles, L., Eichert, N., Schurz, M., Uithol, S., et al. (2021) Does the Temporal Cortex Make Us Human? A Review of Structural and Functional Diversity of the Primate Temporal Lobe. Neuroscience & Biobehavioral Reviews, 131, 400-410. https://doi.org/10.1016/j.neubiorev.2021.08.032 |
[15] | Zhang, X. and Zhang, J. (2022) The Human Brain in a High Altitude Natural Environment: A Review. Frontiers in Human Neuroscience, 16, Article ID: 915995. https://doi.org/10.3389/fnhum.2022.915995 |
[16] | Chen, X., Liu, J., Wang, J., Xin, Z., Zhang, Q., Zhang, W., et al. (2020) Altered Resting-State Networks May Explain the Executive Impairment in Young Health Immigrants into High-Altitude Area. Brain Imaging and Behavior, 15, 147-156. https://doi.org/10.1007/s11682-019-00241-1 |
[17] | Xin, Z., Chen, X., Zhang, Q., Wang, J., Xi, Y., Liu, J., et al. (2020) Alteration in Topological Properties of Brain Functional Network after 2‐year High Altitude Exposure: A Panel Study. Brain and Behavior, 10, e01656. https://doi.org/10.1002/brb3.1656 |
[18] | Hota, S.K., Barhwal, K., Baitharu, I., Prasad, D., Singh, S.B. and Ilavazhagan, G. (2009) Bacopa monniera Leaf Extract Ameliorates Hypobaric Hypoxia Induced Spatial Memory Impairment. Neurobiology of Disease, 34, 23-39. https://doi.org/10.1016/j.nbd.2008.12.006 |
[19] | Jain, K., Prasad, D., Singh, S.B. and Kohli, E. (2015) Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus. Neurology Research International, 2015, Article ID: 742059. https://doi.org/10.1155/2015/742059 |
[20] | Bailey, D.M., Brugniaux, J.V., Filipponi, T., Marley, C.J., Stacey, B., Soria, R., et al. (2018) Exaggerated Systemic Oxidative‐Inflammatory‐Nitrosative Stress in Chronic Mountain Sickness Is Associated with Cognitive Decline and Depression. The Journal of Physiology, 597, 611-629. https://doi.org/10.1113/jp276898 |
[21] | Bhatt, S., Nagappa, A.N. and Patil, C.R. (2020) Role of Oxidative Stress in Depression. Drug Discovery Today, 25, 1270-1276. https://doi.org/10.1016/j.drudis.2020.05.001 |
[22] | Snyder, B., Shell, B., Cunningham, J.T. and Cunningham, R.L. (2017) Chronic Intermittent Hypoxia Induces Oxidative Stress and Inflammation in Brain Regions Associated with Early-Stage Neurodegeneration. Physiological Reports, 5, e13258. https://doi.org/10.14814/phy2.13258 |
[23] | Cools, R. and Arnsten, A.F.T. (2021) Neuromodulation of Prefrontal Cortex Cognitive Function in Primates: The Powerful Roles of Monoamines and Acetylcholine. Neuropsychopharmacology, 47, 309-328. https://doi.org/10.1038/s41386-021-01100-8 |
[24] | Gil, S.M. and Metherate, R. (2018) Enhanced Sensory-Cognitive Processing by Activation of Nicotinic Acetylcholine Receptors. Nicotine & Tobacco Research, 21, 377-382. https://doi.org/10.1093/ntr/nty134 |
[25] | Cunha-Rodrigues, M.C., Balduci, C.T.D.N., Tenório, F. and Barradas, P.C. (2018) GABA Function May Be Related to the Impairment of Learning and Memory Caused by Systemic Prenatal Hypoxia-Ischemia. Neurobiology of Learning and Memory, 149, 20-27. https://doi.org/10.1016/j.nlm.2018.01.004 |
[26] | Sharma, R., Cramer, N.P., Perry, B., Adahman, Z., Murphy, E.K., Xu, X., et al. (2019) Chronic Exposure to High Altitude: Synaptic, Astroglial and Memory Changes. Scientific Reports, 9, Article No. 16406. https://doi.org/10.1038/s41598-019-52563-1 |
[27] | Li, Y. and Wang, Y. (2022) Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sciences, 12, Article No. 808. https://doi.org/10.3390/brainsci12060808 |
[28] | Shanjun, Z., Shenwei, X., Bin, X., Huaijun, T., Simin, Z. and Peng, L. (2020) Individual Chronic Mountain Sickness Symptom Is an Early Warning Sign of Cognitive Impairment. Physiology & Behavior, 214, Article ID: 112748. https://doi.org/10.1016/j.physbeh.2019.112748 |
[29] | Niu, G., Zhu, D., Zhang, X., Wang, J., Zhao, Y. and Wang, X. (2018) Role of Hypoxia-Inducible Factors 1α (HIF1α) in SH-SY5Y Cell Autophagy Induced by Oxygen-Glucose Deprivation. Medical Science Monitor, 24, 2758-2766. https://doi.org/10.12659/msm.905140 |
[30] | McMorris, T., Hale, B.J., Barwood, M., Costello, J. and Corbett, J. (2017) Effect of Acute Hypoxia on Cognition: A Systematic Review and Meta-Regression Analysis. Neuroscience & Biobehavioral Reviews, 74, 225-232. https://doi.org/10.1016/j.neubiorev.2017.01.019 |
[31] | Raven, F., Van der Zee, E.A., Meerlo, P. and Havekes, R. (2018) The Role of Sleep in Regulating Structural Plasticity and Synaptic Strength: Implications for Memory and Cognitive Function. Sleep Medicine Reviews, 39, 3-11. https://doi.org/10.1016/j.smrv.2017.05.002 |
[32] | Zarekiani, P., Breur, M., Wolf, N.I., de Vries, H.E., van der Knaap, M.S. and Bugiani, M. (2021) Pathology of the Neurovascular Unit in Leukodystrophies. Acta Neuropathologica Communications, 9, Article No. 103. https://doi.org/10.1186/s40478-021-01206-6 |
[33] | Serlin, Y., Shelef, I., Knyazer, B. and Friedman, A. (2015) Anatomy and Physiology of the Blood-Brain Barrier. Seminars in Cell & Developmental Biology, 38, 2-6. https://doi.org/10.1016/j.semcdb.2015.01.002 |
[34] | V. Lafuente, J., Bermudez, G., Camargo-Arce, L. and Bulnes, S. (2016) Blood-Brain Barrier Changes in High Altitude. CNS & Neurological Disorders—Drug Targets, 15, 1188-1197. https://doi.org/10.2174/1871527315666160920123911 |
[35] | Li, R., Wang, T., Lyu, P., Liu, Y., Chen, W., Fan, M., et al. (2018) Effects of Plasma Lipids and Statins on Cognitive Function. Chinese Medical Journal, 131, 471-476. https://doi.org/10.4103/0366-6999.225062 |
[36] | Morrison, S.A., Mirnik, D., Korsic, S., Eiken, O., Mekjavic, I.B. and Dolenc-Groselj, L. (2017) Bed Rest and Hypoxic Exposure Affect Sleep Architecture and Breathing Stability. Frontiers in Physiology, 8, Article No. 410. https://doi.org/10.3389/fphys.2017.00410 |
[37] | Hernández-Vásquez, A., Vargas-Fernández, R., Rojas-Roque, C. and Gamboa-Unsihuay, J.E. (2022) Association between Altitude and Depression in Peru: An 8-Year Pooled Analysis of Population-Based Surveys. Journal of Affective Disorders, 299, 536-544. https://doi.org/10.1016/j.jad.2021.12.059 |
[38] | Kious, B.M., Kondo, D.G. and Renshaw, P.F. (2018) Living High and Feeling Low: Altitude, Suicide, and Depression. Harvard Review of Psychiatry, 26, 43-56. https://doi.org/10.1097/hrp.0000000000000158 |
[39] | Pun, M., Guadagni, V., Bettauer, K.M., Drogos, L.L., Aitken, J., Hartmann, S.E., et al. (2018) Effects on Cognitive Functioning of Acute, Subacute and Repeated Exposures to High Altitude. Frontiers in Physiology, 9, Article No. 1131. https://doi.org/10.3389/fphys.2018.01131 |
[40] | Hüfner, K., Sperner-Unterweger, B. and Brugger, H. (2019) Going to Altitude with a Preexisting Psychiatric Condition. High Altitude Medicine & Biology, 20, 207-214. https://doi.org/10.1089/ham.2019.0020 |
[41] | Aajami, Z., kazazi, L., Troski, M., Bahrami, M. and Borhaninejad, V. (2020) Relationship between Depression and Cognitive Impairment among Elderly: A Cross-Sectional Study. Journal of Caring Sciences, 9, 148-153. https://doi.org/10.34172/jcs.2020.022 |
[42] | 中华医学会精神医学分会抑郁障碍研究协作组. 抑郁症认知症状评估与干预专家共识[J]. 中华精神科杂志, 2020, 53(5): 369-376. |
[43] | Daly, S., Thorpe, M., Rockswold, S., Hubbard, M., Bergman, T., Samadani, U., et al. (2018) Hyperbaric Oxygen Therapy in the Treatment of Acute Severe Traumatic Brain Injury: A Systematic Review. Journal of Neurotrauma, 35, 623-629. https://doi.org/10.1089/neu.2017.5225 |
[44] | Maroon, J.C. (2022) The Effect of Hyperbaric Oxygen Therapy on Cognition, Performance, Proteomics, and Telomere Length—The Difference between Zero and One: A Case Report. Frontiers in Neurology, 13, Article ID: 949536. https://doi.org/10.3389/fneur.2022.949536 |
[45] | Marcinkowska, A.B., Mankowska, N.D., Kot, J. and Winklewski, P.J. (2021) Impact of Hyperbaric Oxygen Therapy on Cognitive Functions: A Systematic Review. Neuropsychology Review, 32, 99-126. https://doi.org/10.1007/s11065-021-09500-9 |
[46] | Huang, T., Lai, J., Du, Y., Xu, Y., Ruan, L. and Hu, S. (2019) Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Frontiers in Genetics, 10, Article No. 98. https://doi.org/10.3389/fgene.2019.00098 |
[47] | Novotný, M., Klimova, B. and Valis, M. (2019) Microbiome and Cognitive Impairment: Can Any Diets Influence Learning Processes in a Positive Way? Frontiers in Aging Neuroscience, 11, Article No. 170. https://doi.org/10.3389/fnagi.2019.00170 |
[48] | Brown, E. and Taylor, C.T. (2017) Hypoxia‐Sensitive Pathways in Intestinal Inflammation. The Journal of Physiology, 596, 2985-2989. https://doi.org/10.1113/jp274350 |
[49] | L’Huillier, C., Jarbeau, M., Achamrah, N., Belmonte, L., Amamou, A., Nobis, S., et al. (2019) Glutamine, but Not Branched-Chain Amino Acids, Restores Intestinal Barrier Function during Activity-Based Anorexia. Nutrients, 11, Article No. 1348. https://doi.org/10.3390/nu11061348 |
[50] | Jung, M., Zou, L., Yu, J.J., Ryu, S., Kong, Z., Yang, L., et al. (2020) Does Exercise Have a Protective Effect on Cognitive Function under Hypoxia? A Systematic Review with Meta-Analysis. Journal of Sport and Health Science, 9, 562-577. https://doi.org/10.1016/j.jshs.2020.04.004 |