|
基于应变率敏感性吸能材料冲击过程的猝量理论实验验证
|
Abstract:
猝量理论主要研究物体在变力作用下的动力学特性,当前主要是进行理论研究,相关实验研究较少。论文以吸能材料的冲击过程为研究对象,采用理论分析和实验验证方法,研究了在物体质量不变条件下,当外力随时间线性变化时,吸能材料动力学特性。根据牛二定律建立了质量恒定的吸能冲击材料力变率与急动度的函数关系,给出了吸能材料在冲击载荷作用下的急动度、速度、位移、冲击功解析公式,在此基础上,进行了吸能材料冲击试验,以验证理论计算方法和公式的正确性。结果表明:试验数据与理论结果基本一致,验证了理论结果的正确性。该方法对于力变率为常数的冲击载荷动力学研究具有参考意义。
The jerk theory mainly studies the dynamic characteristics of objects under the action of variable force. There are many theoretical research results in this area, but few related experiments. Taking the impact process of energy absorbing materials as the research object, the dynamic characteristics of energy absorbing materials are studied by theoretical analysis and experimental verification methods when the external force changes linearly with time under the condition that the mass of the object is constant. According to Niu Er’s law, the functional relationship between the force change rate and the jerk of the energy absorbing impact material with constant mass is established, and the analytical calculation formulas of the jerk, velocity, displacement and impact energy of the energy absorbing material under the impact load are given. Based on which, the impact test of the energy absorbing material is carried out to verify the correctness of the theoretical calculation method and formula. Results show that the theoretical results are in good agreement with the experimental result, which verifies the correctness of the theoretical results. This method has reference significance for the study of impact load dynamics with constant force rate.
[1] | 黄沛天. 一个描写机械运动的新概念——急动度[J]. 物理, 1981, 10(7): 394-397. |
[2] | 阿布拉罕-洛伦兹力[Z]. https://zh.wikipedia.org/wiki/ |
[3] | Özen, K., Dündar, F. and Tosun, M. (2019) An Alternative Approach to Jerk in Motion along a Space Curve with Applications. Journal of Theoretical and Applied Mechanics, 57, 435-444. https://doi.org/10.15632/jtam-pl/104595 |
[4] | Özen, K.E., Güner, M. and Tosun, M. (2020) A Note on the Acceleration and Jerk in Motion along a Space Curve. Analele Universitatii “Ovidius” Constanta-Seria Matematica, 28, 151-164. https://doi.org/10.2478/auom-2020-0011 |
[5] | Schot, S.H. (1978) Jerk: The Time Rate of Change of Acceleration. American Journal of Physics, 46, 1090-1094. https://doi.org/10.1119/1.11504 |
[6] | 朱明. 加速度, 挠率与点的空间曲线运动[J]. 力学与实践, 1983, 5(5): 48-50. |
[7] | 叶柏年. 点的加加速度[J]. 力学与实践, 1988, 10(5): 53-55. |
[8] | Linz, S.J. (1997) Nonlinear Dynamical Models and Jerky Motion. American Journal of Physics, 65, 523-526. https://doi.org/10.1119/1.18594 |
[9] | Linz, S.J. (1998) Newtonian Jerky Dynamics: Some General Properties. American Journal of Physics, 66, 1109-1114. https://doi.org/10.1119/1.19052 |
[10] | 黄沛天, 马善钧, 徐学翔, 等. 变加速动力学纵横[J]. 力学与实践, 2004, 26(6): 85-87. |
[11] | 黄沛天, 徐学翔, 马善钧, 等. 牛顿猝变动力学中的新守恒量[J]. 江西师范大学学报(自然科学版), 2007, 31(2): 115-116. |
[12] | 黄沛天, 徐学翔, 马善钧. 试论混沌和急动度之关系[J]. 江西师范大学学报(自然科学版), 2006, 30(1): 43-46. |
[13] | 徐亚军, 张赛, 庞晓亮, 杜尚宇, 张德生. 硅基应变率敏感性吸能材料吸能效果试验分析[J/OL]. 煤炭学报: 1-10. https://doi.org/10.13225/j.cnki.jccs.2023.0713, 2023-12-26. |
[14] | 郭振华. 介绍一个新和力学量——急动度[J]. 广西物理, 1999, 20(3): 9-12. |
[15] | 黄沛天. 从传统牛顿力学到当今猝变动力学[J]. 大学物理, 2006, 25(1): 1-3. |
[16] | 黄沛天, 黄文, 胡利云. 变加速运动理论与实践意义初探[J]. 江西师范大学学报(自然科学版): 2003, 27(1): 8-11. |
[17] | 沈惠天. 吴大猷先生点评《经典力学》[J]. 物理, 2000, 29(12): 743-746. |
[18] | Sprott, J.C. (1997) Some Simple Chaotic Jerk Functions. American Journal of Physics, 65, 537-543. https://doi.org/10.1119/1.18585 |