全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MMAe的模型平均置信区间研究
Research on Model-Averaged Confidence Interval Based on MMAe

DOI: 10.12677/aam.2024.139403, PP. 4225-4233

Keywords: 模型平均,置信区间,MMAe,MMA,MATA
Model Average
, Confidence Interval, MMAe, MMA, MATA

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究并比较了基于MMAe赋权的模型平均下,Wald置信区间,MATA置信区间,及Bootstrap置信区间的覆盖率、区间长度、左右错误率等各方面的表现性能。不同信噪比水平下的模拟显示,Wald置信区间在低信噪比时有更好的覆盖率,高信噪比下,三者覆盖率相近,MATA置信区间相对长度更短。在与MMA等其他模型平均方法的横向比较中,MMAe的赋权在Wald、MATA及Bootstrap三种置信区间的构建下,均比其他赋权方式在更低的样本量下更早达到名义覆盖率。最后在实例中考察MMAe在不同置信区间下的表现,与模拟表现一致。
This article studies and compares the performance of models based on MMAe weighting in terms of coverage, interval length, left and right error rates under average, Wald confidence interval, MATA confidence interval, and Bootstrap confidence interval. Simulations at different levels of signal show that the Wald confidence interval has better coverage at low signal, while at high signal, the three’s confidence interval has similar coverage, and the MATA confidence interval is relatively shorter in length. In the horizontal comparison with other model averaging methods such as MMA, the weighting of MMAe reached nominal coverage earlier than other weighting methods at lower sample sizes under the construction of Wald, MATA, and Bootstrap confidence intervals. Finally, the performance of MMAe at different confidence intervals was examined in the example, which was consistent with the simulation results.

References

[1]  Efron, B. (2014) Estimation and Accuracy after Model Selection. Journal of the American Statistical Association, 109, 991-1007.
https://doi.org/10.1080/01621459.2013.823775
[2]  Longford, N.T. (2008) An Alternative Analysis of Variance. SORT-Statistics and Operations Research Transactions, 32, 77-92.
[3]  Burnham, K.P. and Anderson, D.R. (2002) Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach. 2nd Edition, Springer.
https://doi.org/10.1007/b97636
[4]  Turek, D. and Fletcher, D. (2012) Model-Averaged Wald Confidence Intervals. Computational Statistics & Data Analysis, 56, 2809-2815.
https://doi.org/10.1016/j.csda.2012.03.002
[5]  Zeng, J., Fletcher, D., Dillingham, P.W. and Cornwall, C.E. (2019) Studentized Bootstrap Model-Averaged Tail Area Intervals. PLOS ONE, 14, e0213715.
https://doi.org/10.1371/journal.pone.0213715
[6]  Hansen, B.E. (2007) Least Squares Model Averaging. Econometrica, 75, 1175-1189.
https://doi.org/10.1111/j.1468-0262.2007.00785.x
[7]  Liu, Q. and Okui, R. (2013) Heteroscedasticity‐Robust CP Model Averaging. The Econometrics Journal, 16, 463-472.
https://doi.org/10.1111/ectj.12009
[8]  Wan, A.T.K., Zhang, X. and Zou, G. (2010) Least Squares Model Averaging by Mallows Criterion. Journal of Econometrics, 156, 277-283.
https://doi.org/10.1016/j.jeconom.2009.10.030
[9]  Feng, Y., Liu, Q. and Okui, R. (2020) On the Sparsity of Mallows Model Averaging Estimator. Economics Letters, 187, Article 108916.
https://doi.org/10.1016/j.econlet.2019.108916
[10]  Zou, H. (2006) The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101, 1418-1429.
https://doi.org/10.1198/016214506000000735
[11]  Cao, K., Li, X., Zhou, Y. and Zou, C. (2023) On Improvability of Model Averaging by Penalized Model Selection. Stat, 12, e529.
https://doi.org/10.1002/sta4.529
[12]  Buckland, S.T., Burnham, K.P. and Augustin, N.H. (1997) Model Selection: An Integral Part of Inference. Biometrics, 53, 603-618.
https://doi.org/10.2307/2533961
[13]  郭庆光. 若干情形下的模型平均置信区间[D]: [硕士学位论文]. 青岛: 青岛大学, 2022.
[14]  Narula, S.C. and Wellington, J.F. (1977) Prediction, Linear Regression and the Minimum Sum of Relative Errors. Technometrics, 19, 185-190.
https://doi.org/10.1080/00401706.1977.10489526

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133