Application of Remote Sensing and GIS in Mineral Alteration Mapping and Lineament Extraction Case of Oudiane Elkharoub (Requibat Shield, Northern of Mauritania)
The integration of remotely sensed data allowed the successful characterization of the mineral alteration zones of the Oudiane Elkharoub area in the Northeastern part of Reguibat Shield using image transformation techniques. As both chemical and geochemical analyses showed significant Au, Ag, Cu, Pb, Mn, Cr, Ni, Th and Y anomalies, it’s very interesting to apply the remote sensing and GIS in mineral resources mapping. The remote sensing is a direct adjunct to the field, lithologic and structural mapping, and more recently, GIS has played an important role in the study of mineralization areas. The integration of several evidential maps highlighted the plausible areas with high concentrations of chlorite, epidote, kaolinite, calcite, alunite, hematite, illite and sulfur among other key mineral alterations that reflect the intensity of hydrothermal effects and the probable sites of ore bodies. The methodological approach integrates geological information acquired from Aster and Landsat 8 OLI/TIRS (Operational Land Imager/Thermal InfraRed Sensor) images and a multi-criteria GIS analysis. The superimposition of various lineament and hydrothermal alteration maps and the consideration of precious and base metal indicators allowed the zoning of sites likely to contain mineral concentrations. Remote sensing becomes an important tool for locating mineral deposits in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithological mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. Ground truthing and laboratory studies including XRD analysis were utilized to verify the results.
References
[1]
Ahmadi, H. and Uygucgil, H. (2021) Targeting Iron Prospective within the Kabul Block (SE Afghanistan) via Hydrothermal Alteration Mapping Using Remote Sensing Techniques. Arabian Journal of Geosciences, 14, Article No. 183. https://doi.org/10.1007/s12517-020-06430-3
[2]
Testa, F., Villanueva, C., Cooke, D. and Zhang, L. (2018) Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery. Remote Sensing, 10, Article 203. https://doi.org/10.3390/rs10020203
[3]
Mathieu, L. (2018) Quantifying Hydrothermal Alteration: A Review of Methods. Geosciences, 8, Article 245. https://doi.org/10.3390/geosciences8070245
[4]
Goetz, A.F.H., Rock, B.N. and Rowan, L.C. (1983) Remote Sensing for Exploration; an Overview. Economic Geology, 78, 573-590. https://doi.org/10.2113/gsecongeo.78.4.573
[5]
Poormirzaee, R. and Oskouei, M.M. (2009) Detection Minerals by Advanced Spectral Analysis in ETM+ Imagery. Proceeding of 7th Iranian Student Conference Mining Engineering, Tabriz, 22 September 2009, 111-119.
[6]
Sabins, F.F. (1999) Remote Sensing for Mineral Exploration. Ore Geology Reviews, 14, 157-183. https://doi.org/10.1016/s0169-1368(99)00007-4
[7]
Abrams, M.J., Brown, D., Lepley, L. and Sadowski, R. (1983) Remote Sensing for Porphyry Copper Deposits in Southern Arizona. Economic Geology, 78, 591-604. https://doi.org/10.2113/gsecongeo.78.4.591
[8]
Sabins, F.F. (1997) Remote Sensing Strategies for Mineral Exploration. In: Rencz, A.E., Ed., Remote Sensing for the Earth Sciences, John Wiley & Sons, 375-447.
[9]
Ninomiya, Y. (2003) Advanced Remote Lithologic Mapping in Ophiolite Zone with ASTER Multispectral Thermal Infrared Data. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, 21-25 July 2003, 1561-1563. https://doi.org/10.1109/igarss.2003.1294175
[10]
Gabr, S., Ghulam, A. and Kusky, T. (2010) Detecting Areas of High-Potential Gold Mineralization Using ASTER Data. Ore Geology Reviews, 38, 59-69. https://doi.org/10.1016/j.oregeorev.2010.05.007
[11]
Tangestani, M.H. and Moore, F. (2000) Iron Oxide and Hydroxyl Enhancement Using the Crosta Method: A Case Study from the Zagros Belt, Fars Province, Iran. International Journal of Applied Earth Observation and Geoinformation, 2, 140-146. https://doi.org/10.1016/s0303-2434(00)85007-2
[12]
Mia, B. and Fujimitsu, Y. (2012) Mapping Hydrothermal Altered Mineral Deposits Using Landsat 7 ETM+ Image in and around Kuju Volcano, Kyushu, Japan. Journal of Earth System Science, 121, 1049-1057. https://doi.org/10.1007/s12040-012-0211-9
[13]
Yajima, T. (2014) ASTER Data Analysis Applied to Mineral Resource Exploration and Geological Mapping. Ph.D. Thesis, Nagoya University.
[14]
Abdelkareem, M., Kamal El-Din, G.M. and Osman, I. (2018) An Integrated Approach for Mapping Mineral Resources in the Eastern Desert of Egypt. International Journal of Applied Earth Observation and Geoinformation, 73, 682-696. https://doi.org/10.1016/j.jag.2018.07.005
[15]
Zhang, X., Pazner, M. and Duke, N. (2007) Lithologic and Mineral Information Extraction for Gold Exploration Using ASTER Data in the South Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62, 271-282. https://doi.org/10.1016/j.isprsjprs.2007.04.004
[16]
Azizi, H., Tarverdi, M.A. and Akbarpour, A. (2010) Extraction of Hydrothermal Alterations from ASTER SWIR Data from East Zanjan, Northern Iran. Advances in Space Research, 46, 99-109. https://doi.org/10.1016/j.asr.2010.03.014
[17]
Guha, A., Singh, V.K., Parveen, R., Kumar, K.V., Jeyaseelan, A.T. and Dhanamjaya Rao, E.N. (2013) Analysis of ASTER Data for Mapping Bauxite Rich Pockets within High Altitude Lateritic Bauxite, Jharkhand, India. International Journal of Applied Earth Observation and Geoinformation, 21, 184-194. https://doi.org/10.1016/j.jag.2012.08.003
[18]
Abrams, M. and Hook, S.J. (1995) Simulated Aster Data for Geologic Studies. IEEE Transactions on Geoscience and Remote Sensing, 33, 692-699. https://doi.org/10.1109/36.387584
[19]
Mars, J.C. and Rowan, L.C. (2006) Regional Mapping of Phyllic-and Argillic-Altered Rocks in the Zagros Magmatic Arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Logical Operator Algorithms. Geosphere, 2, 161-186.
[20]
Crósta, A.P., De Souza Filho, C.R., Azevedo, F. and Brodie, C. (2003) Targeting Key Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using ASTER Imagery and Principal Component Analysis. International Journal of Remote Sensing, 24, 4233-4240. https://doi.org/10.1080/0143116031000152291
[21]
Galvão, L.S., Almeida-Filho, R. and Vitorello, Í. (2005) Spectral Discrimination of Hydrothermally Altered Materials Using ASTER Short-Wave Infrared Bands: Evaluation in a Tropical Savannah Environment. International Journal of Applied Earth Observation and Geoinformation, 7, 107-114. https://doi.org/10.1016/j.jag.2004.12.003
[22]
Yamaguchi, Y. and Naito, C. (2003) Spectral Indices for Lithologic Discrimination and Mapping by Using the ASTER SWIR Bands. International Journal of Remote Sensing, 24, 4311-4323. https://doi.org/10.1080/01431160110070320
[23]
Abdelkareem, M. and El-Baz, F. (2017) Characterizing Hydrothermal Alteration Zones in Hamama Area in the Central Eastern Desert of Egypt by Remotely Sensed Data. Geocarto International, 33, 1307-1325. https://doi.org/10.1080/10106049.2017.1325410
[24]
Zadeh, M.H., Tangestani, M.H., Roldan, F.V. and Yusta, I. (2014) Mineral Exploration and Alteration Zone Mapping Using Mixture Tuned Matched Filtering Approach on ASTER Data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 284-289. https://doi.org/10.1109/jstars.2013.2261800
[25]
Pour, A.B. and Hashim, M. (2014) Integrating PALSAR and ASTER Data for Mineral Deposits Exploration in Tropical Environments: A Case Study from Central Belt, Peninsular Malaysia. International Journal of Image and Data Fusion, 6, 170-188. https://doi.org/10.1080/19479832.2014.985619
[26]
Crowley, J.K., Brickey, D.W. and Rowan, L.C. (1989) Airborne Imaging Spectrometer Data of the Ruby Mountains, Montana: Mineral Discrimination Using Relative Absorption Band-Depth Images. Remote Sensing of Environment, 29, 121-134. https://doi.org/10.1016/0034-4257(89)90021-7
[27]
Rowan, L.C. and Mars, J.C. (2003) Lithologic Mapping in the Mountain Pass, California Area Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Remote Sensing of Environment, 84, 350-366. https://doi.org/10.1016/s0034-4257(02)00127-x
[28]
Rowan, L.C., Goetz, A.F.H. and Ashley, R.P. (1977) Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and near Infrared Multispectral Images. Geophysics, 42, 522-535. https://doi.org/10.1190/1.1440723
Hezarkhani, A. (2006) Hydrothermal Evolution of the Sar-Cheshmeh Porphyry Cu-Mo Deposit, Iran: Evidence from Fluid Inclusions. Journal of Asian Earth Sciences, 28, 409-422. https://doi.org/10.1016/j.jseaes.2005.11.003
[31]
Joly, A., Porwal, A., McCuaig, T.C., Chudasama, B., Dentith, M.C. and Aitken, A.R.A. (2015) Mineral Systems Approach Applied to GIS-Based 2D-Prospectivity Modelling of Geological Regions: Insights from Western Australia. Ore Geology Reviews, 71, 673-702. https://doi.org/10.1016/j.oregeorev.2015.06.007
[32]
Sun, T., Chen, F., Zhong, L., Liu, W. and Wang, Y. (2019) GIS-Based Mineral Prospectivity Mapping Using Machine Learning Methods: A Case Study from Tongling Ore District, Eastern China. Ore Geology Reviews, 109, 26-49. https://doi.org/10.1016/j.oregeorev.2019.04.003
[33]
Carranza, E.J.M., Hale, M. and Faassen, C. (2008) Selection of Coherent Deposit-Type Locations and Their Application in Data-Driven Mineral Prospectivity Mapping. Ore Geology Reviews, 33, 536-558. https://doi.org/10.1016/j.oregeorev.2007.07.001
[34]
Campos, L.D., de Souza, S.M., de Sordi, D.A., Tavares, F.M., Klein, E.L. and Lopes, E.C.D.S. (2017) Predictive Mapping of Prospectivity in the Gurupi Orogenic Gold Belt, North-Northeast Brazil: An Example of District-Scale Mineral System Approach to Exploration Targeting. Natural Resources Research, 26, 509-534. https://doi.org/10.1007/s11053-016-9320-5
[35]
Carranza, E.J.M. and Laborte, A.G. (2015) Data-Driven Predictive Mapping of Gold Prospectivity, Baguio District, Philippines: Application of Random Forests Algorithm. Ore Geology Reviews, 71, 777-787. https://doi.org/10.1016/j.oregeorev.2014.08.010
[36]
Podwysocki, M.H., Segal, D.B. and Jones, O.D. (1983) Mapping of Hydrothermally Altered Rocks Using Airborne Multispectral Scanner Data, Marysvale, Utah, Mining District. Advances in Space Research, 3, 101-112. https://doi.org/10.1016/0273-1177(83)90109-6
[37]
Tangestani, M.H. and Moore, F. (2002) Porphyry Copper Alteration Mapping at the Meiduk Area, Iran. International Journal of Remote Sensing, 23, 4815-4825. https://doi.org/10.1080/01431160110115564
[38]
Farrand, W.H. (1997) Identification and Mapping of Ferric Oxide and Oxyhydroxide Minerals in Imaging Spectrometer Data of Summitville, Colorado, U.S.A., and the Surrounding San Juan Mountains. International Journal of Remote Sensing, 18, 1543-1552. https://doi.org/10.1080/014311697218269
[39]
Spatz, D.M. (1997) Remote Sensing Characteristics of the Sediment-and Volcanic-Hosted Precious Metal Systems: Imagery Selection for Exploration and Development. International Journal of Remote Sensing, 18, 1413-1438. https://doi.org/10.1080/014311697218205
[40]
Neville, R.A., Sun, L. and Staenz, K. (2003) Detection of Spectral Line Curvature in Imaging Spectrometer Data. SPIE Proceedings, 5093, 144-154. https://doi.org/10.1117/12.487342
[41]
Akhavi, M.S., Webster, T.L. and Raymond, D.A. (2001) RADARSAT‐1 Imagery and GIS Modeling for Mineral Exploration in Nova Scotia, Canada. Geocarto International, 16, 57-64. https://doi.org/10.1080/10106040108542183
[42]
Rocci, G. (1966) Essai d’interprétation des mesures géochronologique de la structure de l’Ouest africain. Science Terre, 10, 3-4.
[43]
Bessoles, B. (1977) Géologie de l’Afrique: Le craton ouest africain. Bureau de Recherche de la Géologie et des Mines, Mémoire, 88, 403.
[44]
Potrel, A. (1994) Evolution tectono-métamorphique d’un segment de croute continentale Archéenne. Exemple de l’Amsaga (R.I. Mauritanie), Dorsale Rgueibat. Ph.D. Thesis, Université de Rennes. https://theses.hal.science/tel-00675134/
[45]
Traore, D.Y. (2017) Etude Metallogenique du district aurifère de Syama (Mali): Analyse comparative de gisement situes sur un même structure lithosphérique éburnéenne. Ph.D. Thesis, Université Paul Sabatier-Toulouse III. https://theses.hal.science/tel-01900948/
[46]
Pitfield, et al. (2004) Geology of the West African Craton.
[47]
Ennih, N. and Liégeois, J. (2008) The Boundaries of the West African Craton, with Special Reference to the Basement of the Moroccan Metacratonic Anti-Atlas Belt. Geological Society, London, Special Publications, 297, 1-17. https://doi.org/10.1144/sp297.1
[48]
Heron, K. (2016) Origine et évolution de la Ceinture Verte Mesarchéenne d’Aoueouat et la minéralisation aurifère associée. Ph.D. Thesis, Trinity College.
[49]
Villeneuve, M. (2008) Review of the Orogenic Belts on the Western Side of the West African Craton: The Bassarides, Rokelides and Mauritanides. Geological Society, London, Special Publications, 297, 169-201. https://doi.org/10.1144/sp297.8
[50]
Kah, L.C., Bartley, J.K. and Teal, D.A. (2012) Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted Isotopic Variability, Facies Correlation, and Global Isotopic Trends. Precambrian Research, 200, 82-103. https://doi.org/10.1016/j.precamres.2012.01.011
[51]
Taib, M. (2012) The Mineral Industry of Mauritania. USGS Minerals Yearbook 2012 (Advance Release). https://books.google.com/books?hl=en&lr=&id=SkhxjpjwEq0C&oi=fnd&pg=SA28-PA7&dq=Taib,+M.,+2012.+The+Mineral+Industry+of+Mauritania,+USGS+Minerals+Yearbook+2012&ots=TLA0CCBUTP&sig=N6IlaVe7wZHky8vKMbXYK3lhNk4#v=onepage&q&f=false
[52]
Taleb, O.A. (1994) Caractérisation pétrographique et géochimique du plutonisme birimien de la dorsale Reguibat (Mauritanie, Afrique de l’Ouest). Master’s Thesis, Henri Poincaré University. https://hal.univ-lorraine.fr/tel-01747477
[53]
Thieblemont, D., Lahondere, D., Goujou, C., Roger, J., Metour, J., Marchand, J., Gatta, B., O’Hadi, M., Diabira, F.B. and Thiam, B. (2003) Carte géologique a 1/200000 du Nord de la Mauritanie, 14 coupure. DMG, Ministère des Mine et de l’Industrie.
[54]
Lahondere, D., Thieblemont, D., Goujou, J.C., Roger, J., Moussine-Pouchkine, A., Le Metour, J., Cocherie, A. and Guerrot, C. (2003) Notice explicative des cartes géologiques et gitologiques a 1/200000 et 1/500000 du Nord de la Mauritanie. Volume 1. DMG, Ministère des Mines et de l’Industrie.
[55]
Lahondere, D., Rogger, J., Thieblemont, D., Goujou, J.C., Marchand, J., Bronner, G. and Le Metour, J. (2003) Notice explicative des cartes géologiques a 1/500000 du Nord de la Mauritanie, 9 coupures. DMG, Ministère des Mines et de l’Industrie.
[56]
Finn, C.A. and Horton, J.D. (2012) A Ministère du pétrole, de l’énergie et des mines. U.S Geological Survey Administrative Report.
[57]
Lepretre, et al. (2015) Geological Map Presenting the West African Craton, Centered on the Reguibat Shield.
[58]
Green, A.A. and Craig, M.D. (1985) Analysis of Aircraft Spectrometer Data with Logarithmic Residuals. Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop, Pasadena, 8-10 April 1985, 111-119. https://ntrs.nasa.gov/api/citations/19860002169/downloads/19860002169.pdf
[59]
Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., et al. (1993) The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, 44, 145-163. https://doi.org/10.1016/0034-4257(93)90013-n
[60]
Boardman, W. and Kruse, F.A. (1994) Automated Spectra Analysis: A Geologic Example Using AVIRIS Data, North Grapevine on Geologic Remote Sensing. Environmental Research Institute of Michigan, 407-418.
[61]
Lowell, J.D. and Guilbert, J.M. (1970) Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposits. Economic Geology, 65, 373-408. https://doi.org/10.2113/gsecongeo.65.4.373
[62]
Meyer, D., Siemonsma, D., Brooks, B. and Johnson, L. (2015) Advanced Spaceborne Thermal Emission and Reflection Radiometer Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) Product, Algorithm Theoretical Basis Document. US Department of the Interior, US Geological Survey. https://doi.org/10.3133/ofr20151171
[63]
Cooley, T., Anderson, G.P., Felde, G.W., Hoke, M.L., Ratkowski, A.J., Chetwynd, J.H., et al. (2002) FLAASH, a Modtran4-Based Atmospheric Correction Algorithm, Its Application and Validation. IEEE International Geoscience and Remote Sensing Symposium, Toronto, 24-28 June 2002, 1414-1418. https://doi.org/10.1109/igarss.2002.1026134
[64]
Thome, K., Palluconi, F., Takashima, T. and Masuda, K. (1998) Atmospheric Correction of Aster. IEEE Transactions on Geoscience and Remote Sensing, 36, 1199-1211. https://doi.org/10.1109/36.701026
[65]
Abrams, M. (2000) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on Nasa’s Terra Platform. International Journal of Remote Sensing, 21, 847-859. https://doi.org/10.1080/014311600210326
[66]
Mwaniki, M.W., Moeller, M.S. and Schellmann, G. (2015) A Comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in Mapping Geology and Visualising Lineaments: A Case Study of Central Region Kenya. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 7, 897-903. https://doi.org/10.5194/isprsarchives-xl-7-w3-897-2015
[67]
Marion, A. (1987) Introduction aux techniques de traitement d’image. Editions Ey-rolles.
[68]
Drury, S.A. (1986) Remote Sensing of Geological Structure in Temperate Agricultural Terrains. Geological Magazine, 123, 113-121. https://doi.org/10.1017/s0016756800029770
[69]
Ahmadi, H. and Pekkan, E. (2021) Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11, Article 183. https://doi.org/10.3390/geosciences11050183
[70]
Irons, J.R., Dwyer, J.L. and Barsi, J.A. (2012) The Next Landsat Satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122, 11-21. https://doi.org/10.1016/j.rse.2011.08.026
[71]
Roy, D.P., Wulder, M.A., Loveland, T.R., C.E., W., Allen, R.G., Anderson, M.C., et al. (2014) Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sensing of Environment, 145, 154-172. https://doi.org/10.1016/j.rse.2014.02.001
[72]
Huntington, J.F. and Raiche, A.P. (1978) A Multi-Attribute Method for Comparing Geological Lineament Interpretations. Remote Sensing of Environment, 7, 145-161. https://doi.org/10.1016/0034-4257(78)90044-5
[73]
Azman, A.I., Talib, J.A. and Sokiman, M.S. (2020) The Integration of Remote Sensing Data for Lineament Mapping in the Semanggol Formation, Northwest Peninsular Malaysia. IOP Conference Series: Earth and Environmental Science, 540, Article ID: 012026. https://doi.org/10.1088/1755-1315/540/1/012026
[74]
Ramli, M.F., Yusof, N., Yusoff, M.K., Juahir, H. and Shafri, H.Z.M. (2010) Lineament Mapping and Its Application in Landslide Hazard Assessment: A Review. Bulletin of Engineering Geology and the Environment, 69, 215-233. https://doi.org/10.1007/s10064-009-0255-5