全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

鱼皮胶原蛋白对促进慢性创面愈合的研究进展
Research Progress on the Promotion of Chronic Wound Healing by Fish Skin Collagen Protein

DOI: 10.12677/jcpm.2024.33109, PP. 757-763

Keywords: 慢性创面,创面愈合,鱼皮胶原蛋白
Chronic Wound
, Wound Healing, Fish Skin Collagen Protein

Full-Text   Cite this paper   Add to My Lib

Abstract:

慢性创面是全球医疗保健系统的社会负担,也是患者的经济负担,严重影响了他们的生活质量。老年人和糖尿病患者等易感人群的迅速增长,使慢性创面的发生率一直在稳步上升。慢性创面的特点是伤口愈合过程延迟,在标准护理下愈合比急性(即健康)创面需要更长的时间。由于感染的参与和严重程度,慢性创面的愈合一直是令人担忧的问题。生物材料在慢性创面管理中的功能和作用已经得到普遍认可,这种生物材料之一是胶原蛋白,胶原蛋白作为伤口敷料中最常用的材料之一,因为它有助于模仿本地伤口微环境,它被认为是大多数用于创面愈合配方的关键成分。传统的胶原蛋白从陆地动物中提取出来,它存在宗教限制,也存在疾病传播的风险;而鱼皮胶原蛋白从海洋生物中提取出来,因其具有独特的结构和功能特性,使其成为细胞附着、生长和分化的天然基质。鱼皮胶原蛋白不仅可以促进皮肤上皮化、血管化、成纤维细胞迁移,还能整体加快创面愈合的能力,未来将成为一种潜在的更有前途的新型材料分子。本文我们介绍了用于慢性创面愈合的鱼皮胶原蛋白的最新研究进展。旨在为进一步研究提供新的观点。
Chronic wounds are a social burden on the global healthcare system and an economic burden on patients, seriously affecting their quality of life. The rapid growth of susceptible populations such as the elderly and diabetes patients has led to a steady increase in the incidence of chronic wounds. The characteristic of chronic wounds is delayed wound healing process, which takes longer to heal under standard care than acute (i.e. healthy) wounds. The healing of chronic wounds has always been a concern due to the involvement and severity of infections. The function and role of biomaterials in chronic wound management have been widely recognized. One of these biomaterials is collagen, which is one of the most commonly used materials in wound dressings because it helps mimic the local wound microenvironment. It is considered a key ingredient in most wound healing formulas. Traditional collagen is extracted from terrestrial animals, which has religious restrictions and the risk of disease transmission; Fish skin collagen is extracted from marine organisms and has unique structural and functional properties, making it a natural matrix for cell attachment, growth, and differentiation. Fish skin collagen can not only promote skin epithelialization, vascularization, and fibroblast migration, but also accelerate the overall ability of wound healing. In the future, it will become a potential and more promising new material molecule. In this article, we introduce the latest research progress on fish skin collagen used for chronic wound healing. Intended to provide new perspectives for further research.

References

[1]  Martin, P. and Nunan, R. (2015) Cellular and Molecular Mechanisms of Repair in Acute and Chronic Wound Healing. British Journal of Dermatology, 173, 370-378.
https://doi.org/10.1111/bjd.13954
[2]  Lindholm, C. and Searle, R. (2016) Wound Management for the 21st Century: Combining Effectiveness and Efficiency. International Wound Journal, 13, 5-15.
https://doi.org/10.1111/iwj.12623
[3]  Verdolino, D.V., Thomason, H.A., Fotticchia, A. and Cartmell, S. (2021) Wound Dressings: Curbing Inflammation in Chronic Wound Healing. Emerging Topics in Life Sciences, 5, 523-537.
https://doi.org/10.1042/etls20200346
[4]  Castillo-Briceño, P., Bihan, D., Nilges, M., Hamaia, S., Meseguer, J., García-Ayala, A., et al. (2011) A Role for Specific Collagen Motifs during Wound Healing and Inflammatory Response of Fibroblasts in the Teleost Fish Gilthead Seabream. Molecular Immunology, 48, 826-834.
https://doi.org/10.1016/j.molimm.2010.12.004
[5]  Holl, J., Kowalewski, C., Zimek, Z., Fiedor, P., Kaminski, A., Oldak, T., et al. (2021) Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells, 10, Article No. 655.
https://doi.org/10.3390/cells10030655
[6]  Wilkinson, H.N. and Hardman, M.J. (2020) Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biology, 10, Article ID: 200223.
https://doi.org/10.1098/rsob.200223
[7]  Takeo, M., Lee, W. and Ito, M. (2015) Wound Healing and Skin Regeneration. Cold Spring Harbor Perspectives in Medicine, 5, a023267-a023267.
https://doi.org/10.1101/cshperspect.a023267
[8]  Cowin, A.J. (2019) New Innovations in Wound Healing and Repair. International Journal of Molecular Sciences, 20, Article No. 1724.
https://doi.org/10.3390/ijms20071724
[9]  Chattopadhyay, S. and Raines, R.T. (2014) Collagen‐Based Biomaterials for Wound Healing. Biopolymers, 101, 821-833.
https://doi.org/10.1002/bip.22486
[10]  Garraud, O., Hozzein, W.N. and Badr, G. (2017) Wound Healing: Time to Look for Intelligent, “Natural” Immunological Approaches? BMC Immunology, 18, Article No. 23.
https://doi.org/10.1186/s12865-017-0207-y
[11]  Deng, X., Gould, M. and Ali, M.A. (2022) A Review of Current Advancements for Wound Healing: Biomaterial Applications and Medical Devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110, 2542-2573.
https://doi.org/10.1002/jbm.b.35086
[12]  Blanco, M., Vázquez, J., Pérez-Martín, R. and Sotelo, C. (2017) Hydrolysates of Fish Skin Collagen: An Opportunity for Valorizing Fish Industry Byproducts. Marine Drugs, 15, Article No. 131.
https://doi.org/10.3390/md15050131
[13]  Carpio, K.C.R., Bezerra, R.S., Cahú, T.B., Monte, F.T.D.D., Neri, R.C.A., Silva, J.F.d., et al. (2023) Extraction and Characterization of Collagen from the Skin of Amazonian Freshwater Fish Pirarucu. Brazilian Journal of Medical and Biological Research, 56, e12564.
https://doi.org/10.1590/1414-431x2023e12564
[14]  Kharaziha, M., Baidya, A. and Annabi, N. (2021) Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Advanced Materials, 33, Article ID: 2100176.
https://doi.org/10.1002/adma.202100176
[15]  Chen, H., Wei, X., Zhang, C., et al. (2018) Progress of Fish Collagen as Novel Biomedical Material. Chinese Journal of Reparative and Reconstructive Surgery, 32, 1227-1230.
[16]  Carvalho, A.M., Marques, A.P., Silva, T.H. and Reis, R.L. (2018) Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Marine Drugs, 16, Article No. 495.
https://doi.org/10.3390/md16120495
[17]  Rahman, M. (2016) An Overview of the Medical Applications of Marine Skeletal Matrix Proteins. Marine Drugs, 14, Article No. 167.
https://doi.org/10.3390/md14090167
[18]  Benayahu, D., Sharabi, M., Pomeraniec, L., Awad, L., Haj-Ali, R. and Benayahu, Y. (2018) Unique Collagen Fibers for Biomedical Applications. Marine Drugs, 16, Article No. 102.
https://doi.org/10.3390/md16040102
[19]  Tziveleka, L., Ioannou, E., Tsiourvas, D., Berillis, P., Foufa, E. and Roussis, V. (2017) Collagen from the Marine Sponges Axinella Cannabina and Suberites Carnosus: Isolation and Morphological, Biochemical, and Biophysical Characterization. Marine Drugs, 15, Article No. 152.
https://doi.org/10.3390/md15060152
[20]  Cluzel, C., Lethias, C., Garrone, R. and Exposito, J. (2004) Distinct Maturations of N-Propeptide Domains in Fibrillar Procollagen Molecules Involved in the Formation of Heterotypic Fibrils in Adult Sea Urchin Collagenous Tissues. Journal of Biological Chemistry, 279, 9811-9817.
https://doi.org/10.1074/jbc.m311803200
[21]  Sionkowska, A., Adamiak, K., Musiał, K. and Gadomska, M. (2020) Collagen Based Materials in Cosmetic Applications: A Review. Materials, 13, Article No. 4217.
https://doi.org/10.3390/ma13194217
[22]  Silva, T., Moreira-Silva, J., Marques, A., Domingues, A., Bayon, Y. and Reis, R. (2014) Marine Origin Collagens and Its Potential Applications. Marine Drugs, 12, 5881-5901.
https://doi.org/10.3390/md12125881
[23]  Chen, J., Gao, K., Liu, S., Wang, S., Elango, J., Bao, B., et al. (2019) Fish Collagen Surgical Compress Repairing Characteristics on Wound Healing Process in Vivo. Marine Drugs, 17, Article No. 33.
https://doi.org/10.3390/md17010033
[24]  Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C. and de Pascale, D. (2021) Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19, Article No. 116.
https://doi.org/10.3390/md19020116
[25]  Exposito, J., Cluzel, C., Garrone, R. and Lethias, C. (2002) Evolution of Collagens. The Anatomical Record, 268, 302-316.
https://doi.org/10.1002/ar.10162
[26]  Macha, I.J. and Ben-Nissan, B. (2018) Marine Skeletons: Towards Hard Tissue Repair and Regeneration. Marine Drugs, 16, Article No. 225.
https://doi.org/10.3390/md16070225
[27]  Zhang, X., Wang, J., Zhang, Q., Fan, Y., Zhang, H., Ahmad, K., et al. (2023) Distribution, Typical Structure and Self-Assembly Properties of Collagen from Fish Skin and Bone. Molecules, 28, Article No. 6529.
https://doi.org/10.3390/molecules28186529
[28]  Lapi, I., Kolliniati, O., Aspevik, T., Deiktakis, E.E., Axarlis, K., Daskalaki, M.G., et al. (2021) Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Marine Drugs, 19, Article No. 396.
https://doi.org/10.3390/md19070396
[29]  Benedetto, C., Barbaglio, A., Martinello, T., Alongi, V., Fassini, D., Cullorà, E., et al. (2014) Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus Lividus. Marine Drugs, 12, 4912-4933.
https://doi.org/10.3390/md12094912
[30]  Afzali, M. and Boateng, J.S. (2022) Composite Fish Collagen-Hyaluronate Based Lyophilized Scaffolds Modified with Sodium Alginate for Potential Treatment of Chronic Wounds. Polymers, 14, Article No. 1550.
https://doi.org/10.3390/polym14081550
[31]  Widdowson, J.P., Picton, A.J., Vince, V., Wright, C.J. and Mearns‐Spragg, A. (2017) In Vivo Comparison of Jellyfish and Bovine Collagen Sponges as Prototype Medical Devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 1524-1533.
https://doi.org/10.1002/jbm.b.33959
[32]  Wang, J., Xu, M., Liang, R., Zhao, M., Zhang, Z. and Li, Y. (2015) Oral Administration of Marine Collagen Peptides Prepared from Chum Salmon (Oncorhynchus keta) Improves Wound Healing Following Cesarean Section in Rats. Food & Nutrition Research, 59, Article No. 26411.
https://doi.org/10.3402/fnr.v59.26411
[33]  Caruso, G., Floris, R., Serangeli, C. and Di Paola, L. (2020) Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Marine Drugs, 18, Article No. 622.
https://doi.org/10.3390/md18120622
[34]  Yamada, S., Yamamoto, K., Ikeda, T., Yanagiguchi, K. and Hayashi, Y. (2014) Potency of Fish Collagen as a Scaffold for Regenerative Medicine. BioMed Research International, 2014, Article ID: 302932.
https://doi.org/10.1155/2014/302932
[35]  Geahchan, S., Baharlouei, P. and Rahman, A. (2022) Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Marine Drugs, 20, Article No. 61.
https://doi.org/10.3390/md20010061
[36]  Hu, Z., Yang, P., Zhou, C., Li, S. and Hong, P. (2017) Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation. Marine Drugs, 15, Article No. 102.
https://doi.org/10.3390/md15040102
[37]  Vaiserman, A., Koliada, A., Zayachkivska, A. and Lushchak, O. (2020) Nanodelivery of Natural Antioxidants: An Anti-Aging Perspective. Frontiers in Bioengineering and Biotechnology, 7, Article No. 447.
https://doi.org/10.3389/fbioe.2019.00447
[38]  Yamamoto, K., Igawa, K., Sugimoto, K., Yoshizawa, Y., Yanagiguchi, K., Ikeda, T., et al. (2014) Biological Safety of Fish (Tilapia) Collagen. BioMed Research International, 2014, Article ID: 630757.
https://doi.org/10.1155/2014/630757
[39]  Farahani, M. and Shafiee, A. (2021) Wound Healing: From Passive to Smart Dressings. Advanced Healthcare Materials, 10, Article ID: 2100477.
https://doi.org/10.1002/adhm.202100477

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133