全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进的聚类和核密度估计的分布鲁棒均值-CVaR投资组合优化
Robust Mean-CVaR Portfolio Optimization Based on Enhanced Clustering and Kernel Density Estimation

DOI: 10.12677/aam.2024.139391, PP. 4099-4107

Keywords: K-Means,核密度估计,分布鲁棒优化,CVaR
K-Means
, Kernel Density Estimation, Distribution Robust Optimization, CVaR

Full-Text   Cite this paper   Add to My Lib

Abstract:

在金融市场中,如何构建最优投资组合来平衡风险和回报是当今研究者所面临的主要问题之一。为了构建最优投资组合,研究者们通常使用的是VaR或CVaR模型。本研究通过综合运用聚类、核密度估计以及分布鲁棒均值-CVaR模型的方法,从而达到提升股票投资组合的构建和风险管理能力的目的。本文考虑了包含100只股票日收益数据的实验数据集,通过优化聚类方法,利用核密度估计确定了K-means算法的最佳聚类中心和k值选取。随后,将聚类后的数据输入核密度估计的分布鲁棒均值-CVaR模型中进行分析。通过窗口滚动实验,比较了在有无聚类条件下模型对投资组合收益率的影响。结果显示,应用聚类方法后的模型具有更高的投资组合收益率,有助于投资者更好地平衡风险与回报,构建最优的投资组合。
In financial markets, how to construct an optimal investment portfolio that balances risk and return is one of the main challenges faced by researchers today. To build an optimal portfolio, researchers typically use VaR or CVaR models. This study aims to enhance the construction of stock portfolios and risk management capabilities by comprehensively utilizing methods such as clustering, kernel density estimation, and distributionally robust mean-CVaR models. The paper utilized an experimental dataset containing daily returns of 100 stocks. By optimizing clustering methods and determining the optimal clustering centers and k values of the K-means algorithm using kernel density estimation, we then input the clustered data into the robust mean-CVaR model for analysis. By rolling window experiments, we compared the impact of the model on portfolio returns with and without clustering conditions. The results show that the model with clustering methods applied has higher portfolio returns, helping investors better balance risk and return to construct optimal portfolios.

References

[1]  Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.
https://doi.org/10.2307/2975974
[2]  Konno, H., Shirakawa, H. and Yamazaki, H. (1993) A Mean-Absolute Deviation-Skewness Portfolio Optimization Model. Annals of Operations Research, 45, 205-220.
https://doi.org/10.1007/bf02282050
[3]  Markowitz, H. (1959) Portfolio Selection: Efficient Diversification of Investments. Wiley, Hoboken.
[4]  Gaivoronski, A.A. and Pflug, G. (1991) Finding Optimal Portfolios with Constraints on Value at Risk. The III Stock-holm Seminar on Risk Behavior and Risk Management, Stockholm,10 January 1991, 1.
[5]  Rockafellar, R.T. and Uryasev, S. (2000) Optimization of Conditional Value-at-Risk. The Journal of Risk, 2, 21-41.
https://doi.org/10.21314/jor.2000.038
[6]  Rockafellar, R.T. and Uryasev, S. (2002) Conditional Value-At-Risk for General Loss Distributions. Journal of Banking & Finance, 26, 1443-1471.
https://doi.org/10.1016/s0378-4266(02)00271-6
[7]  牛昂. Value at Risk: 银行风险管理的新方法[J]. 国际金融研究, 1997, 27(4): 61-65.
[8]  姚刚. 风险值测定法浅析[J]. 经济科学, 1998, 19(1): 56-51.
[9]  刘宇飞. VAR模型及其在金融监管中的应用[J]. 经济科学,1999, 20(1): 39-50.
[10]  王春风, 万海晖, 张维. 金融市场风险测量模型-VAR [J]. 系统工程学报, 2000, 15(1): 67-76.
[11]  Lobo, M.S., Vandenberghe, L., Boyd, S. and Lebret, H. (1998) Applications of Second-Order Cone Programming: Interior-Point Methods and Engineering Applications. Linear Algebra and Its Applications, 284, 193-228.
https://doi.org/10.1016/s0024-3795(98)10032-0
[12]  Zhu, S. and Fukushima, M. (2009) Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management. Operations Research, 57, 1155-1168.
https://doi.org/10.1287/opre.1080.0684
[13]  Zhu, L., Coleman, T. and Li, Y. (2009) Min-Max Robust and Cvar Robust Mean-Variance Portfolios. The Journal of Risk, 11, 55-85.
https://doi.org/10.21314/jor.2009.191
[14]  杨娟, 屈传慧. 改进K均值聚类算法[J]. 舰船电子对抗, 2017, 40(6): 91-93.
[15]  杜洪波, 白阿珍, 朱立军. 基于改进的密度峰值算法的K-means算法[J]. 统计与决策, 2018, 34(18): 20-24.
[16]  熊开玲, 彭俊杰, 杨晓飞, 黄俊. 基于核密度估计的K-means聚类优化[J]. 计算机技术与发展, 2017, 27(2): 1-5.
[17]  Rockafellar, R.T. and Uryasev, S. (2000) Optimization of Conditional Value-at-Risk. The Journal of Risk, 2, 21-41.
https://doi.org/10.21314/jor.2000.038
[18]  Rockafellar, R.T. and Uryasev, S. (2002) Conditional Value-at-Risk for General Loss Distributions. Journal of Banking & Finance, 26, 1443-1471.
https://doi.org/10.1016/s0378-4266(02)00271-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133