全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非他汀类降低低密度胆固醇药物简述
Brief Overview of Statins for Lowering Low-Density Lipid Cholesterol

DOI: 10.12677/pi.2024.135050, PP. 422-428

Keywords: 心血管疾病,血脂异常,家族性高胆固醇血症,前蛋白转化酶枯草溶菌素9,他汀类药物
Cardiovascular Disease
, Dyslipidemia, Familial Hypercholesterolemia, Proprotein Converting Enzyme Subtilisin 9, Statin Drugs

Full-Text   Cite this paper   Add to My Lib

Abstract:

低密度脂蛋白胆固醇(Low Density Lipoprotein Cholesterol, LDL-C)是动脉粥样硬化性心血管疾病的致病性危险因素,动脉粥样硬化是心血管死亡的主要原因。因此,降低LDL-C水平是预防心血管疾病的主要目标。主要用他汀类药物降低血浆胆固醇水平。尽管使用他汀类药物最大剂量治疗,LDL-C降低水平仍不达标,仍存在与血脂相关的心血管风险,各种不良事件增加。目前,研究和开发了几种非他汀类药物,其作用机制与他汀类药物相辅相成,其目的是降低血浆胆固醇水平。
Low-density lipoprotein cholesterol (LDL-C) is a pathogenic risk factor for atherosclerotic cardiovascular diseases, which are the leading cause of cardiovascular mortality. Therefore, reducing LDL-C levels is a primary objective in the prevention of cardiovascular diseases. Statin drugs are primarily used to lower plasma cholesterol levels. Despite treatment with the maximum dosage of statin drugs, the reduction in LDL-C levels is still not up to standard, and there is still a cardiovascular risk associated with blood lipids, with an increase in various adverse events. At present, several non-statin drugs have been researched and developed, whose mechanisms of action complement those of statin drugs, with the aim of lowering plasma cholesterol levels.

References

[1]  王增武, 郭远林. 中国血脂管理指南(基层版2024年) [J]. 临床心血管病杂志, 2024, 4(40): 249-256.
[2]  Di Costanzo, A., Indolfi, C., Sorrentino, S., Esposito, G. and Spaccarotella, C.A.M. (2023) The Effects of Statins, Ezetimibe, PCSK9-Inhibitors, Inclisiran, and Icosapent Ethyl on Platelet Function. International Journal of Molecular Sciences, 24, Article 11739.
https://doi.org/10.3390/ijms241411739
[3]  史威力, 李明艳, 段红艳. 《他汀类药物用于成年人心血管疾病的一级预防: 美国预防临床服务指南工作组推荐声明》解读[J]. 中国全科医学, 2024, 27(12): 1405-1412.
[4]  Wang, L. and Song, B. (2012) Niemann-Pick C1-Like 1 and Cholesterol Uptake. Biochimica et Biophysica Acta (BBA) —Molecular and Cell Biology of Lipids, 1821, 964-972.
https://doi.org/10.1016/j.bbalip.2012.03.004
[5]  Descamps, O.S., De Sutter, J., Guillaume, M. and Missault, L. (2011) Where Does the Interplay between Cholesterol Absorption and Synthesis in the Context of Statin and/or Ezetimibe Treatment Stand Today? Atherosclerosis, 217, 308-321.
https://doi.org/10.1016/j.atherosclerosis.2011.06.010
[6]  Cholesterol Treatment Trialists’ (CTT) Collaboration (2010) Efficacy and Safety of More Intensive Lowering of LDL Cholesterol: A Meta-Analysis of Data from 170 000 Participants in 26 Randomized Trials. The Lancet, 376, 1670-1681.
https://doi.org/10.1016/s0140-6736(10)61350-5
[7]  Choi, H., Kang, S., Jeong, S., Yoon, C., Youn, T., Song, W.H., et al. (2023) Lipid-Lowering Efficacy of Combination Therapy with Moderate-Intensity Statin and Ezetimibe versus High-Intensity Statin Monotherapy: A Randomized, Open-Label, Non-Inferiority Trial from Korea. Journal of Lipid and Atherosclerosis, 12, 277-289.
https://doi.org/10.12997/jla.2023.12.3.277
[8]  Sakamoto, K., Kawamura, M., Kohro, T., Omura, M., Watanabe, T., Ashidate, K., et al. (2015) Effect of Ezetimibe on LDL-C Lowering and Atherogenic Lipoprotein Profiles in Type 2 Diabetic Patients Poorly Controlled by Statins. PLOS ONE, 10, e0138332.
https://doi.org/10.1371/journal.pone.0138332
[9]  Raschi, E., Casula, M., Cicero, A.F.G., Corsini, A., Borghi, C. and Catapano, A. (2023) Beyond Statins: New Pharmacological Targets to Decrease LDL-Cholesterol and Cardiovascular Events. Pharmacology & Therapeutics, 250, Article 108507.
https://doi.org/10.1016/j.pharmthera.2023.108507
[10]  Khan, S.U., Khan, M.U., Rahman, H., Khan, M.S., Riaz, H., Novak, M., et al. (2019) A Bayesian Network Meta-Analysis of Preventive Strategies for Contrast-Induced Nephropathy after Cardiac Catheterization. Cardiovascular Revascularization Medicine, 20, 29-37.
https://doi.org/10.1016/j.carrev.2018.06.005
[11]  Norata, G.D., Tavori, H., Pirillo, A., Fazio, S. and Catapano, A.L. (2016) Biology of Proprotein Convertase Subtilisin Kexin 9: Beyond Low-Density Lipoprotein Cholesterol Lowering. Cardiovascular Research, 112, 429-442.
https://doi.org/10.1093/cvr/cvw194
[12]  Da Dalt, L., Ruscica, M., Bonacina, F., Balzarotti, G., Dhyani, A., Di Cairano, E., et al. (2018) PCSK9 Deficiency Reduces Insulin Secretion and Promotes Glucose Intolerance: The Role of the Low-Density Lipoprotein Receptor. European Heart Journal, 40, 357-368.
https://doi.org/10.1093/eurheartj/ehy357
[13]  Perego, C., Da Dalt, L., Pirillo, A., Galli, A., Catapano, A.L. and Norata, G.D. (2019) Cholesterol Metabolism, Pancreatic Β-Cell Function and Diabetes. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 2149-2156.
https://doi.org/10.1016/j.bbadis.2019.04.012
[14]  Sahebkar, A. and Watts, G.F. (2013) New Ldl-Cholesterol Lowering Therapies: Pharmacology, Clinical Trials, and Relevance to Acute Coronary Syndromes. Clinical Therapeutics, 35, 1082-1098.
https://doi.org/10.1016/j.clinthera.2013.06.019
[15]  Blom, D.J., Fayad, Z.A., Kastelein, J.J.P., Larrey, D., Makris, L., Schwamlein, C., et al. (2016) LOWER, a Registry of Lomitapide-Treated Patients with Homozygous Familial Hypercholesterolemia: Rationale and Design. Journal of Clinical Lipidology, 10, 273-282.
https://doi.org/10.1016/j.jacl.2015.11.011
[16]  Giugliano, R.P., Desai, N.R., Kohli, P., Rogers, W.J., Somaratne, R., Huang, F., et al. (2012) Efficacy, Safety, and Tolerability of a Monoclonal Antibody to Proprotein Convertase Subtilisin/Kexin Type 9 in Combination with a Statin in Patients with Hypercholesterolaemia (LAPLACE-TIMI 57): A Randomized, Placebo-Controlled, Dose-Ranging, Phase 2 Study. The Lancet, 380, 2007-2017.
https://doi.org/10.1016/s0140-6736(12)61770-x
[17]  Nicholls, S.J., Puri, R., Anderson, T., Ballantyne, C.M., Cho, L., Kastelein, J.J.P., et al. (2016) Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients. Journal of the American Medical Association, 316, 2373-2384.
https://doi.org/10.1001/jama.2016.16951
[18]  Raal, F.J., Stein, E.A., Dufour, R., Turner, T., Civeira, F., Burgess, L., et al. (2015) PCSK9 Inhibition with Evolocumab (AMG 145) in Heterozygous Familial Hypercholesterolaemia (RUTHERFORD-2): A Randomized, Double-Blind, Placebo-Controlled Trial. The Lancet, 385, 331-340.
https://doi.org/10.1016/s0140-6736(14)61399-4
[19]  O’Donoghue, M.L., Giugliano, R.P., Wiviott, S.D., Atar, D., Keech, A., Kuder, J.F., et al. (2022) Long-Term Evolocumab in Patients with Established Atherosclerotic Cardiovascular Disease. Circulation, 146, 1109-1119.
https://doi.org/10.1161/circulationaha.122.061620
[20]  Schludi, B., Giugliano, R.P., Sabatine, M.S., Raal, F.J., Teramoto, T., Koren, M.J., et al. (2022) Time-Averaged Low-Density Lipoprotein Cholesterol Lowering with Evolocumab: Pooled Analysis of Phase 2 Trials. Journal of Clinical Lipidology, 16, 538-543.
https://doi.org/10.1016/j.jacl.2022.05.069
[21]  Giugliano, R.P., Cannon, C.P., Blazing, M.A., Nicolau, J.C., Corbalán, R., Špinar, J., et al. (2018) Benefit of Adding Ezetimibe to Statin Therapy on Cardiovascular Outcomes and Safety in Patients with versus without Diabetes Mellitus. Circulation, 137, 1571-1582.
https://doi.org/10.1161/circulationaha.117.030950
[22]  Ghouse, J., Ahlberg, G., Bundgaard, H. and Olesen, M.S. (2021) Effect of Loss-of-Function Genetic Variants in PCSK9 on Glycemic Traits, Neurocognitive Impairment, and Hepatobiliary Function. Diabetes Care, 45, 251-254.
https://doi.org/10.2337/dc21-0955
[23]  Dufour, R., Bergeron, J., Gaudet, D., Weiss, R., Hovingh, G.K., Qing, Z., et al. (2017) Open-Label Therapy with Alirocumab in Patients with Heterozygous Familial Hypercholesterolemia: Results from Three Years of Treatment. International Journal of Cardiology, 228, 754-760.
https://doi.org/10.1016/j.ijcard.2016.11.046
[24]  Robinson, J.G., Farnier, M., Krempf, M., Bergeron, J., Luc, G., Averna, M., et al. (2015) Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. New England Journal of Medicine, 372, 1489-1499.
https://doi.org/10.1056/nejmoa1501031
[25]  Farnier, M., Jones, P., Severance, R., Averna, M., Steinhagen-Thiessen, E., Colhoun, H.M., et al. (2016) Efficacy and Safety of Adding Alirocumab to Rosuvastatin versus Adding Ezetimibe or Doubling the Rosuvastatin Dose in High Cardiovascular-Risk Patients: The ODYSSEY OPTIONS II Randomized Trial. Atherosclerosis, 244, 138-146.
https://doi.org/10.1016/j.atherosclerosis.2015.11.010
[26]  Moriarty, P.M., Thompson, P.D., Cannon, C.P., Guyton, J.R., Bergeron, J., Zieve, F.J., et al. (2015) Efficacy and Safety of Alirocumab vs Ezetimibe in Statin-Intolerant Patients, with a Statin Rechallenge Arm: The ODYSSEY ALTERNATIVE Randomized Trial. Journal of Clinical Lipidology, 9, 758-769.
https://doi.org/10.1016/j.jacl.2015.08.006
[27]  Farnier, M., Hovingh, G.K., Langslet, G., Dufour, R., Baccara-Dinet, M.T., Din-Bell, C., et al. (2018) Long-Term Safety and Efficacy of Alirocumab in Patients with Heterozygous Familial Hypercholesterolemia: An Open-Label Extension of the ODYSSEY Program. Atherosclerosis, 278, Article 307-314.
https://doi.org/10.1016/j.atherosclerosis.2018.08.036
[28]  Schwartz, G.G., Steg, P.G., Szarek, M., Bhatt, D.L., Bittner, V.A., Diaz, R., et al. (2018) Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. New England Journal of Medicine, 379, 2097-2107.
https://doi.org/10.1056/nejmoa1801174
[29]  Seidah, N.G., Prat, A., Pirillo, A., Catapano, A.L. and Norata, G.D. (2019) Novel Strategies to Target Proprotein Convertase Subtilisin Kexin 9: Beyond Monoclonal Antibodies. Cardiovascular Research, 115, 510-518.
https://doi.org/10.1093/cvr/cvz003
[30]  Schwartz, G.G., et al. (2023) Transiently Achieved Very Low LDL-Cholesterol Levels by Statin and Alirocumab after Acute Coronary Syndrome Are Associated with Cardiovascular Risk Reduction: The ODYSSEY OUTCOMES Trial. European Heart Journal, 44, 1408-1417.
[31]  Sirtori, C.R., Pavanello, C. and Bertolini, S. (2014) Microsomal Transfer Protein (MTP) Inhibition—A Novel Approach to the Treatment of Homozygous Hypercholesterolemia. Annals of Medicine, 46, 464-474.
https://doi.org/10.3109/07853890.2014.931100
[32]  Chen, J., Fang, Z., Luo, Q., Wang, X., Warda, M., Das, A., et al. (2024) Unlocking the Mysteries of VLDL: Exploring Its Production, Intracellular Trafficking, and Metabolism as Therapeutic Targets. Lipids in Health and Disease, 23, Article No. 14.
https://doi.org/10.1186/s12944-023-01993-y
[33]  Ajufo, E. and Rader, D.J. (2016) Recent Advances in the Pharmacological Management of Hypercholesterolaemia. The Lancet Diabetes & Endocrinology, 4, 436-446.
https://doi.org/10.1016/s2213-8587(16)00074-7
[34]  Samaha, F.F., McKenney, J., Bloedon, L.T., Sasiela, W.J. and Rader, D.J. (2008) Inhibition of Microsomal Triglyceride Transfer Protein Alone or with Ezetimibe in Patients with Moderate Hypercholesterolemia. Nature Clinical Practice Cardiovascular Medicine, 5, 497-505.
https://doi.org/10.1038/ncpcardio1250
[35]  Tuteja, S., Duffy, D., Dunbar, R.L., Movva, R., Gadi, R., Bloedon, L.T., et al. (2013) Pharmacokinetic Interactions of the Microsomal Triglyceride Transfer Protein Inhibitor, Lomitapide, with Drugs Commonly Used in the Management of Hypercholesterolemia. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 34, 227-239.
https://doi.org/10.1002/phar.1351
[36]  Duell, P.B., Santos, R.D., Kirwan, B., Witztum, J.L., Tsimikas, S. and Kastelein, J.J.P. (2016) Long-Term Mipomersen Treatment Is Associated with a Reduction in Cardiovascular Events in Patients with Familial Hypercholesterolemia. Journal of Clinical Lipidology, 10, 1011-1021.
https://doi.org/10.1016/j.jacl.2016.04.013
[37]  Jain, P. (2024) Traditional and Novel Non-Statin Lipid-Lowering Drugs. Indian Heart Journal, 76, S38-S43.
https://doi.org/10.1016/j.ihj.2023.11.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133