全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从“治未病”角度探讨肠道菌群对缺血性心肌病的影响
To Investigate the Effect of Intestinal Flora on Ischemic Cardiomyopathy from the Perspective of “Treating and Preventing Disease”

DOI: 10.12677/acm.2024.1492516, PP. 684-691

Keywords: 中医“治未病”,缺血性心肌病,肠道菌群
Chinese Medicine “Treating and Preventing Disease”
, Ischemic Cardiomyopathy, Intestinal Flora

Full-Text   Cite this paper   Add to My Lib

Abstract:

缺血性心脏病作为心力衰竭的主要病因,具有患病人数多,再入院率和死亡率高的特点。近期研究发现,肠道菌群在心血管发病因素中发挥着重要的作用,肠道菌群失调时,肠道屏障功能发生障碍、肠道内有害菌如肠杆菌门、志贺氏菌和变形菌数量增加,厚壁菌门和乳酸杆菌门丰度减少,肠道内脂多糖、肿瘤坏死因子、干扰素γ增加,短链脂肪酸、白介素-10减少,加剧了全身炎症状态,可提高缺血性心肌病的发病率。因此重视肠道菌群在缺血性心肌病中的作用,通过及时调节肠道菌群,在心衰前期减少危险因素或在患心衰后防止病变加重,提高生活质量,这与中医“治未病”中未病先防,已病防传思想不谋而合,本文将从“治未病”角度探讨重视肠道菌群对缺血性心肌病的价值。
As the main cause of heart failure, ischemic heart disease is characterized by a large number of patients, high readmission rates and high mortality. Recent studies have found that intestinal flora plays an important role in cardiovascular pathogenesis. When intestinal flora is disturbed, intestinal barrier function is impaired, the number of intestinal harmful bacteria such as Enterobacteria, Shigella and Proteobacteria increases, the abundance of firmicutes and Lactobacilli decreases, and intestinal lipopolysaccharides, tumor necrosis factor and interferon γ increase. The decrease of short-chain fatty acids and interleukin-10 can aggravate the systemic inflammatory state and increase the incidence of ischemic cardiomyopathy. Therefore, to pay attention to the role of intestinal flora in ischemic cardiomyopathy, through timely regulation of intestinal flora, reduce risk factors in the early stage of heart failure or prevent disease aggravation after heart failure, and improve the quality of life, which coincides with the idea of preventing disease before disease and preventing disease after disease in traditional Chinese medicine. This paper will discuss the value of paying attention to intestinal flora in ischemic cardiomyopathy from the perspective of “treating disease without disease”.

References

[1]  G-CHF Investigators (2023) Global Variations in Heart Failure Etiology, Management, and Outcomes. JAMA, 329, 1650-1661.
[2]  Del Buono, M.G., Moroni, F., Montone, R.A., Azzalini, L., Sanna, T. and Abbate, A. (2022) Ischemic Cardiomyopathy and Heart Failure after Acute Myocardial Infarction. Current Cardiology Reports, 24, 1505-1515.
https://doi.org/10.1007/s11886-022-01766-6
[3]  Khan, M.A., Hashim, M.J., Mustafa, H., Baniyas, M.Y., Al Suwaidi, S.K.B.M., AlKatheeri, R., et al. (2020) Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus, 12, e9349.
https://doi.org/10.7759/cureus.9349
[4]  国家心血管病中心. 中国心血管健康与疾病报告2022[M]. 北京: 中国协和医科大学出版社, 2023.
[5]  Stone, G.W., Selker, H.P., Thiele, H., Patel, M.R., Udelson, J.E., Ohman, E.M., et al. (2016) Relationship between Infarct Size and Outcomes Following Primary PCI: Patient-Level Analysis from 10 Randomized Trials. Journal of the American College of Cardiology, 67, 1674-1683.
https://doi.org/10.1016/j.jacc.2016.01.069
[6]  刘建飞, 黄鹤. 不同发病年龄冠心病病人临床特点及相关危险因素分析[J]. 中西医结合心脑血管病杂志, 2019, 17(4): 636-638.
[7]  Khoja, A., Andraweera, P.H., Lassi, Z.S., Ali, A., Zheng, M., Pathirana, M.M., et al. (2023) Risk Factors for Premature Coronary Heart Disease in Women Compared to Men: Systematic Review and Meta-Analysis. Journal of Womens Health, 32, 908-920.
https://doi.org/10.1089/jwh.2022.0517
[8]  王艳丽, 张佳, 宋晓丛. 高血压合并冠心病患者冠状动脉病变严重程度与肾功能的关系研究[J]. 河北医药, 2024, 46(4): 551-554.
[9]  姚惠芳, 尹冬彩, 胡建强. 肥胖高血压糖尿病高血脂与冠心病的相关分析[J]. 浙江中西医结合杂志, 2004, 14(4): 259, 封三.
[10]  马依彤, 刘帅. 肥胖与心血管疾病的研究进展[J]. 新疆医科大学学报, 2021, 44(10): 1111-1113.
[11]  余水花, 刘玲梅. 冠心病危险因素探讨[J]. 中原医刊, 2005(6): 21-22.
[12]  Marcobal, A., Barboza, M., Froehlich, J.W., Block, D.E., German, J.B., Lebrilla, C.B., et al. (2010) Consumption of Human Milk Oligosaccharides by Gut-Related Microbes. Journal of Agricultural and Food Chemistry, 58, 5334-5340.
https://doi.org/10.1021/jf9044205
[13]  Battson, M.L., Lee, D.M., Weir, T.L. and Gentile, C.L. (2018) The Gut Microbiota as a Novel Regulator of Cardiovascular Function and Disease. The Journal of Nutritional Biochemistry, 56, 1-15.
https://doi.org/10.1016/j.jnutbio.2017.12.010
[14]  Jin, M., Qian, Z., Yin, J., Xu, W. and Zhou, X. (2019) The Role of Intestinal Microbiota in Cardiovascular Disease. Journal of Cellular and Molecular Medicine, 23, 2343-2350.
https://doi.org/10.1111/jcmm.14195
[15]  欧阳广泽, 孟翔. 经方体系下的“治未病”理论[J]. 长春中医药大学学报, 2019, 35(4): 619-622.
[16]  庄建军. 中医治未病理论探讨[J]. 中国城乡企业卫生, 2020(2): 38-40.
[17]  朱琴琴. 中医药治未病与当代健康理念之探讨[J]. 中国中医药现代远程教育, 2019, 17(10): 44-46.
[18]  Dumas, M., Barton, R.H., Toye, A., Cloarec, O., Blancher, C., Rothwell, A., et al. (2006) Metabolic Profiling Reveals a Contribution of Gut Microbiota to Fatty Liver Phenotype in Insulin-Resistant Mice. Proceedings of the National Academy of Sciences, 103, 12511-12516.
https://doi.org/10.1073/pnas.0601056103
[19]  赵嘉, 梁法勇, 蒙宏, 等. 16S_rDNA测序研究高脂饮食诱导的高脂血症大鼠肠道菌群变化[J]. 中国微生态学杂志, 2022, 34(3): 257-261.
[20]  Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63.
https://doi.org/10.1038/nature09922
[21]  Melchior, T., Rask‐Madsen, C., Torp‐Pedersen, C., Hildebrandt, P., Køber, L. and Jensen, G. (2001) The Impact of Heart Failure on Prognosis of Diabetic and Non‐Diabetic Patients with Myocardial Infarction: A 15‐Year Follow‐Up Study. European Journal of Heart Failure, 3, 83-90.
https://doi.org/10.1016/s1388-9842(00)00117-3
[22]  Song, S. and Lee, J.E. (2018) Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women. Nutrients, 11, Article No. 8.
https://doi.org/10.3390/nu11010008
[23]  Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z., et al. (2019) Research Progress in the Relationship between Type 2 Diabetes Mellitus and Intestinal Flora. Biomedicine & Pharmacotherapy, 117, Article ID: 109138.
https://doi.org/10.1016/j.biopha.2019.109138
[24]  Larsen, N., Vogensen, F.K., van den Berg, F.W.J., Nielsen, D.S., Andreasen, A.S., Pedersen, B.K., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLOS ONE, 5, e9085.
https://doi.org/10.1371/journal.pone.0009085
[25]  邓铁涛, 金政, 吴伟. 国医大师邓铁涛辨治心力衰竭的经验[J]. 中国中西医结合杂志, 2020, 40(6): 754-755.
[26]  胡亚靖, 于河, 顾然, 等. 李东垣内伤饮食辨治思想对现代疾病的指导[J]. 现代中医临床, 2018, 25(2): 38-41.
[27]  郑昊龙, 陈丝, 宋囡, 等. 脾虚模型大鼠肠道菌群分布及时效性研究[J]. 中医杂志, 2020, 61(14): 1262-1267.
[28]  唐超, 赵立志, 罗钢. 中药调节肠道菌群对心血管疾病作用研究进展[J]. 中国中医药现代远程教育, 2023, 21(21): 201-203.
[29]  Fan, Y., Ying, J., Ma, H. and Cui, H. (2023) Microbiota‐Related Metabolites Fueling the Understanding of Ischemic Heart Disease. iMeta, 2, e94.
https://doi.org/10.1002/imt2.94
[30]  Pasini, E., Aquilani, R., Testa, C., Baiardi, P., Angioletti, S., Boschi, F., et al. (2016) Pathogenic Gut Flora in Patients with Chronic Heart Failure. JACC: Heart Failure, 4, 220-227.
https://doi.org/10.1016/j.jchf.2015.10.009
[31]  Luedde, M., Winkler, T., Heinsen, F., Rühlemann, M.C., Spehlmann, M.E., Bajrovic, A., et al. (2017) Heart Failure Is Associated with Depletion of Core Intestinal Microbiota. ESC Heart Failure, 4, 282-290.
https://doi.org/10.1002/ehf2.12155
[32]  谭淑娜. 肠道菌群变化与缺血性心肌病相关性研究[D]: [硕士学位论文]. 天津: 天津医科大学, 2018.
[33]  杜小琴, 王燕侠, 李霞, 等. 血清IL-18、IL-1β及NLRP3炎症小体在射血分数保留型心衰患者中的表达及其与肠道菌群的相关性分析[J]. 现代生物医学进展, 2023, 23(23): 4492-4495.
[34]  Usuda, H., Okamoto, T. and Wada, K. (2021) Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. International Journal of Molecular Sciences, 22, Article No. 7613.
https://doi.org/10.3390/ijms22147613
[35]  Chelakkot, C., Ghim, J. and Ryu, S.H. (2018) Mechanisms Regulating Intestinal Barrier Integrity and Its Pathological Implications. Experimental & Molecular Medicine, 50, 1-9.
https://doi.org/10.1038/s12276-018-0126-x
[36]  李晓芳. 小鼠肠道菌群失衡模型的建立及菌群失衡对肠道机械屏障的影响[D]: [硕士学位论文]. 大连: 大连医科大学, 2009.
[37]  Bardenbacher, M., Ruder, B., Britzen-Laurent, N., Naschberger, E., Becker, C., Palmisano, R., et al. (2020) Investigating Intestinal Barrier Breakdown in Living Organoids. Journal of Visualized Experiments.
https://doi.org/10.3791/60546-v
[38]  高琳. 大鼠脑缺血模型的建立与脑缺血致小肠损伤机制的探讨[J]. 中国伤残医学, 2012, 20(6): 3-4.
[39]  Weber, C.R., Raleigh, D.R., Su, L., Shen, L., Sullivan, E.A., Wang, Y., et al. (2010) Epithelial Myosin Light Chain Kinase Activation Induces Mucosal Interleukin-13 Expression to Alter Tight Junction Ion Selectivity. Journal of Biological Chemistry, 285, 12037-12046.
https://doi.org/10.1074/jbc.m109.064808
[40]  Lu, J., Jin, X., Yang, S., Li, Y., Wang, X. and Wu, M. (2022) Immune Mechanism of Gut Microbiota and Its Metabolites in the Occurrence and Development of Cardiovascular Diseases. Frontiers in Microbiology, 13, Article ID: 1034537.
https://doi.org/10.3389/fmicb.2022.1034537
[41]  Bain, C.C., Scott, C.L., Uronen-Hansson, H., Gudjonsson, S., Jansson, O., Grip, O., et al. (2013) Resident and Pro-Inflammatory Macrophages in the Colon Represent Alternative Context-Dependent Fates of the Same Ly6chi Monocyte Precursors. Mucosal Immunology, 6, 498-510.
https://doi.org/10.1038/mi.2012.89
[42]  Li, C., Xiao, P., Lin, D., Zhong, H., Zhang, R., Zhao, Z., et al. (2021) Risk Factors for Intestinal Barrier Impairment in Patients with Essential Hypertension. Frontiers in Medicine, 7, Article ID: 543698.
https://doi.org/10.3389/fmed.2020.543698
[43]  Takahashi, D., Hoshina, N., Kabumoto, Y., Maeda, Y., Suzuki, A., Tanabe, H., et al. (2020) Microbiota-Derived Butyrate Limits the Autoimmune Response by Promoting the Differentiation of Follicular Regulatory T Cells. EBioMedicine, 58, Article ID: 102913.
https://doi.org/10.1016/j.ebiom.2020.102913
[44]  Kim, M.H., Kang, S.G., Park, J.H., Yanagisawa, M. and Kim, C.H. (2013) Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology, 145, 396-406.e10.
https://doi.org/10.1053/j.gastro.2013.04.056
[45]  Chen, L., Ishigami, T., Nakashima-Sasaki, R., Kino, T., Doi, H., Minegishi, S., et al. (2016) Commensal Microbe-Specific Activation of B2 Cell Subsets Contributes to Atherosclerosis Development Independently of Lipid Metabolism. EBioMedicine, 13, 237-247.
https://doi.org/10.1016/j.ebiom.2016.10.030
[46]  张明雪, 刘硕, 常艳鹏. 冠心病合并心衰证候演变规律[J]. 中国老年学杂志, 2015, 35(6): 1457-1458.
[47]  余思邈, 李萍, 李园, 等. 从“见肝之病, 知肝传脾, 当先实脾”探讨肝硬化的防治[J]. 北京中医药大学学报, 2022, 45(1): 29-33.
[48]  Zhang, S., Zhang, B., Zhang, Q. and Zhang, Z. (2021) Crotonaldehyde Exposure Induces Liver Dysfunction and Mitochondrial Energy Metabolism Disorder in Rats. Toxicology Mechanisms and Methods, 31, 425-436.
https://doi.org/10.1080/15376516.2021.1904073
[49]  Tripathi, A., Debelius, J., Brenner, D.A., Karin, M., Loomba, R., Schnabl, B., et al. (2018) The Gut-Liver Axis and the Intersection with the Microbiome. Nature Reviews Gastroenterology & Hepatology, 15, 397-411.
https://doi.org/10.1038/s41575-018-0011-z
[50]  Roth, G.A., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
[51]  Mitra, S., et al. (2015) In Silico Analyses of Metagenomes from Human Atherosclerotic Plaque Samples. Microbiome, 3, 38.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133