全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于“肠–心–肾轴”理论浅析肠道菌群与高血压病
Analysis of Intestinal Flora and Hypertension Based on the Theory of “Intestinal-Cardiac-Renal Axis”

DOI: 10.12677/acm.2024.1492490, PP. 511-518

Keywords: 高血压病,肠道菌群,肠道菌群及其代谢产物,RAAS系统,肠–心–肾轴
Hypertension
, Intestinal Flora, Intestinal Flora and Its Metabolites, RAAS System, Intestinal-Cardiac-Kidney Axis

Full-Text   Cite this paper   Add to My Lib

Abstract:

肠道菌群及其代谢产物与心血管的联系逐渐被证明,肠道菌群及其代谢产物可以影响RAAS系统,继而对机体的血压水平进行调节。且中医学理论中指出人的五脏六腑时刻处于动态平衡。藏象理论中提出心不仅与肾水火相济,亦与小肠互为表里。当心的脏腑功能失调,肾与小肠的脏腑功能紊乱,继而促进病理产物的产生,致使脉道不利,导致高血压病的发生与发展,反之亦然。本文章论述了肠–心–肾轴的相关中医理论依据与肠道菌群及其代谢产物对血压的调节作用,以期为高血压病的预防以及治疗提供新思路。
The link between intestinal flora and its metabolites and cardiovascular disease has been gradually proved, and intestinal flora and its metabolites can affect the RAAS system, which then regulates the blood pressure level of the body. And the theory of Chinese medicine points out that the five viscera and six bowels of a person are always in dynamic balance. Tibetan theory suggests that the heart not only with the kidneys, water and fire, but also with the small intestine for each other. When the heart’s visceral dysfunction, kidney and small intestine visceral dysfunction, and then promote the production of pathological products, resulting in the pulse channel is unfavorable, leading to the occurrence and development of hypertension, and vice versa. The present article discusses the theoretical basis of the intestinal-cardiac-kidney axis in Chinese medicine and the role of intestinal flora and its metabolites in the regulation of blood pressure, with a view to providing new ideas for the prevention and treatment of hypertension.

References

[1]  World Health Organization (2021) Cardiovascular Diseases (CVDs).
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[2]  周娟. 老年高血压患者血压变异性与其心脏结构、功能的关系研究[J]. 中西医结合心血管病电子杂志, 2018, 6(12): 1-2.
[3]  王钰涵, 段鹏喆, 张鑫, 等. 基于决策树和神经网络的高血压病危险因素研究[J]. 世界科学技术-中医药现代化, 2021, 23(8): 2784-2794.
[4]  朱文, 谢凤群, 程洁, 等. 基于“心与小肠相表里”理论探讨肠道菌群与高血压的关系[J]. 上海中医药杂志, 2023, 57(8): 57-62.
[5]  Holscher, H.D. (2017) Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes, 8, 172-184.
https://doi.org/10.1080/19490976.2017.1290756
[6]  Murphy, E.A., Velazquez, K.T. and Herbert, K.M. (2015) Influence of High-Fat Diet on Gut Microbiota. Current Opinion in Clinical Nutrition and Metabolic Care, 18, 515-520.
https://doi.org/10.1097/mco.0000000000000209
[7]  Suzuki, T.A., Martins, F.M. and Nachman, M.W. (2018) Altitudinal Variation of the Gut Microbiota in Wild House Mice. Molecular Ecology, 28, 2378-2390.
https://doi.org/10.1111/mec.14905
[8]  焦欣, 蔺晓源, 雍苏南. 基于名老中医经验的高血压病病名、病因、病机、证型研究[J]. 中医药信息, 2020, 37(4): 31-35.
[9]  杨洁, 张积宁, 杨传华. 杨传华教授治疗高血压的经验总结[J]. 浙江中医药大学学报, 2023, 47(3): 272-276.
[10]  国家卫生计生委疾病预防控制局. 中国居民营养与慢性病状况报告(2015) [M]. 北京: 人民卫生出版社, 2015: 33-50.
[11]  王清海. 论高血压的中医概念与病名[C]//中国中西医结合学会心血管病专业委员会. 第一届全国中西医结合心血管病中青年医师论坛论文汇编. 2008: 6.
[12]  梁晨露. 中医治疗高血压的临床效果观察[J]. 医疗装备, 2016, 29(4): 113-114.
[13]  韩玲, 高坤. 仲景心肾同病论治的理论与方法[J]. 实用中医内科杂志, 2024, 38(3): 45-47.
http://kns.cnki.net/kcms/detail/21.1187.R.20231114.1417.002.html, 2023-12-27.
[14]  陈建飞, 王铭, 王淑美. 基于“肠心轴”诠释“心与小肠相表里” [J]. 辽宁中医药大学学报, 2022, 24(3): 143-147.
[15]  陈铭泰, 黎美欢, 张健, 等. 基于“心与小肠相表里”探讨心血管疾病与肠道微生态的联系[J]. 世界中医药, 2020, 15(19): 2920-2926.
[16]  朱博冉. 基于“心与小肠相表里”理论泽泻饮通过调节肠道微生态抗动脉粥样硬化的研究[D]: [博士学位论文]. 南京: 南京中医药大学, 2022.
[17]  Avery, E.G., Bartolomaeus, H., Maifeld, A., Marko, L., Wiig, H., Wilck, N., et al. (2021) The Gut Microbiome in Hypertension. Circulation Research, 128, 934-950.
https://doi.org/10.1161/circresaha.121.318065
[18]  Larabi, A., Barnich, N. and Nguyen, H.T.T. (2019) New Insights into the Interplay between Autophagy, Gut Microbiota and Inflammatory Responses in IBD. Autophagy, 16, 38-51.
https://doi.org/10.1080/15548627.2019.1635384
[19]  Yang, Z., Wang, Q., Liu, Y., Wang, L., Ge, Z., Li, Z., et al. (2023) Gut Microbiota and Hypertension: Association, Mechanisms and Treatment. Clinical and Experimental Hypertension, 45, Article 2195135.
https://doi.org/10.1080/10641963.2023.2195135
[20]  Yang, Z., Liu, Y., Wang, L., Lin, S., Dai, X., Yan, H., et al. (2022) Traditional Chinese Medicine against COVID-19: Role of the Gut Microbiota. Biomedicine & Pharmacotherapy, 149, Article 112787.
https://doi.org/10.1016/j.biopha.2022.112787
[21]  Sircana, A., De Michieli, F., Parente, R., Framarin, L., Leone, N., Berrutti, M., et al. (2019) Gut Microbiota, Hypertension and Chronic Kidney Disease: Recent Advances. Pharmacological Research, 144, 390-408.
https://doi.org/10.1016/j.phrs.2018.01.013
[22]  梁彤, 林玥, 任明. 肠道菌群代谢产物与高血压的研究进展[J]. 实用心脑肺血管病杂志, 2022, 30(9): 23-27.
[23]  陈杰, 黄娟, 管茜, 等. 肠源性尿毒素三甲胺-N-氧化物在慢性肾脏疾病中的研究进展[J]. 检验医学与临床, 2023, 20(24): 3702-3706.
http://kns.cnki.net/kcms/detail/50.1167.R.20231120.1216.006.html, 2023-12-22.
[24]  张倩, 沈月毛, 鲁春华. 肠道菌群与五脏六腑相关疾病的研究进展[J]. 云南中医药大学学报, 2023, 46(5): 104-112.
[25]  Saaoud, F., Liu, L., Xu, K., Cueto, R., Shao, Y., Lu, Y., et al. (2023) Aorta-and Liver-Generated TMAO Enhances Trained Immunity for Increased Inflammation via ER Stress/Mitochondrial ROS/Glycolysis Pathways. JCI Insight, 8, e158183.
https://doi.org/10.1172/jci.insight.158183
[26]  葛均波, 徐永健, 王辰, 等. 内科学[M]. 北京: 人民卫生出版社, 2018.
[27]  Sircana, A., De Michieli, F., Parente, R., et al. (2019) Gut Microbiota, Hypertension and Chronic Kidney Disease: Recent Advances. Pharmacological Research, 144, 390-408.
https://doi.org/10.1016/j.phrs.2018.01.013
[28]  中国高血压防治指南修订委员会, 高血压联盟, 中华医学会心血管病学分会中国医师协会高血压专业委员会, 等. 中国高血压防治指南(2018年修订版) [J]. 中国心血管杂志, 2019, 24(1): 24-56.
[29]  陈鲁原. 高血压药物治疗原则及优化[J]. 中国实用内科杂志, 2019, 39(1): 19-22.
[30]  Cheema, M.U. and Pluznick, J.L. (2019) Gut Microbiota Plays a Central Role to Modulate the Plasma and Fecal Metabolomes in Response to Angiotensin II. Hypertension, 74, 184-193.
https://doi.org/10.1161/hypertensionaha.119.13155
[31]  Jaworska, K., Huc, T., Samborowska, E., Dobrowolski, L., Bielinska, K., Gawlak, M., et al. (2017) Hypertension in Rats Is Associated with an Increased Permeability of the Colon to TMA, a Gut Bacteria Metabolite. PLOS ONE, 12, e0189310.
https://doi.org/10.1371/journal.pone.0189310
[32]  Robles-Vera, I., Toral, M., de la Visitación, N., Aguilera-Sánchez, N., Redondo, J.M. and Duarte, J. (2020) Protective Effects of Short-Chain Fatty Acids on Endothelial Dysfunction Induced by Angiotensin II. Frontiers in Physiology, 11, Article 277.
https://doi.org/10.3389/fphys.2020.00277
[33]  Wang, L., Zhu, Q., Lu, A., Liu, X., Zhang, L., Xu, C., et al. (2017) Sodium Butyrate Suppresses Angiotensin II-Induced Hypertension by Inhibition of Renal (Pro)Renin Receptor and Intrarenal Renin-Angiotensin System. Journal of Hypertension, 35, 1899-1908.
https://doi.org/10.1097/hjh.0000000000001378
[34]  Xu, J., Moore, B.N. and Pluznick, J.L. (2022) Short-Chain Fatty Acid Receptors and Blood Pressure Regulation: Council on Hypertension Mid-Career Award for Research Excellence 2021. Hypertension, 79, 2127-2137.
https://doi.org/10.1161/hypertensionaha.122.18558
[35]  Pluznick, J.L., Protzko, R.J., Gevorgyan, H., Peterlin, Z., Sipos, A., Han, J., et al. (2013) Olfactory Receptor Responding to Gut Microbiota-Derived Signals Plays a Role in Renin Secretion and Blood Pressure Regulation. Proceedings of the National Academy of Sciences, 110, 4410-4415.
https://doi.org/10.1073/pnas.1215927110
[36]  Roubenne, L., Marthan, R., Le Grand, B. and Guibert, C. (2021) Hydrogen Sulfide Metabolism and Pulmonary Hypertension. Cells, 10, Article 1477.
https://doi.org/10.3390/cells10061477
[37]  Huc, T., Jurkowska, H., Wróbel, M., Jaworska, K., Onyszkiewicz, M. and Ufnal, M. (2017) Colonic Hydrogen Sulfide Produces Portal Hypertension and Systemic Hypotension in Rats. Experimental Biology and Medicine, 243, 96-106.
https://doi.org/10.1177/1535370217741869
[38]  Weber, G.J., Pushpakumar, S., Tyagi, S.C. and Sen, U. (2016) Homocysteine and Hydrogen Sulfide in Epigenetic, Metabolic and Microbiota Related Renovascular Hypertension. Pharmacological Research, 113, 300-312.
https://doi.org/10.1016/j.phrs.2016.09.002
[39]  Yan, X., Jin, J., Su, X., Yin, X., Gao, J., Wang, X., et al. (2020) Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension. Circulation Research, 126, 839-853.
https://doi.org/10.1161/circresaha.119.316394
[40]  Gao, Q., Xu, L. and Cai, J. (2021) New Drug Targets for Hypertension: A Literature Review. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1867, Article 166037.
https://doi.org/10.1016/j.bbadis.2020.166037
[41]  Jaworska, K., Koper, M. and Ufnal, M. (2021) Gut Microbiota and Renin-Angiotensin System: A Complex Interplay at Local and Systemic Levels. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G355-G366.
https://doi.org/10.1152/ajpgi.00099.2021
[42]  Verhaar, B.J.H., Prodan, A., Nieuwdorp, M. and Muller, M. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12, Article 2982.
https://doi.org/10.3390/nu12102982
[43]  田雨, 丁艳平, 邵宝平, 等. 黄芪等药食同源类中药作为功能性食品与肠道菌群的相互作用[J]. 中国中药杂志, 2020, 45(11): 2486-2492.
[44]  Gill, P.A., van Zelm, M.C., Muir, J.G. and Gibson, P.R. (2018) Review Article: Short Chain Fatty Acids as Potential Therapeutic Agents in Human Gastrointestinal and Inflammatory Disorders. Alimentary Pharmacology & Therapeutics, 48, 15-34.
https://doi.org/10.1111/apt.14689
[45]  韩聪, 姜月华, 李伟, 等. 基于16S rDNA测序技术探索黄芪-丹参药对干预自发性高血压大鼠肠道菌群的机制[J]. 中华中医药杂志, 2019, 34(5): 2233-2237.
[46]  Li, X., Su, C., Jiang, Z., Yang, Y., Zhang, Y., Yang, M., et al. (2021) Berberine Attenuates Choline-Induced Atherosclerosis by Inhibiting Trimethylamine and Trimethylamine-N-Oxide Production via Manipulating the Gut Microbiome. NPJ Biofilms and Microbiomes, 7, Article No. 36.
https://doi.org/10.1038/s41522-021-00205-8
[47]  俞仪萱, 鲁星妤, 张静怡, 等. 葛根芩连汤调节肠道菌群的研究进展[J]. 中医药导报, 2022, 28(3): 147-151.
[48]  朱红俊, 徐辰, 龚少愚, 等. 柴归汤对高血压小鼠血管紧张素转换酶2及肠道菌群的干预作用[J]. 世界中医药, 2023, 18(11): 1547-1550, 1557.
[49]  王托资, 李杨. 当代名中医治疗原发性高血压病经验总结[J]. 中医药临床杂志, 2018, 30(9): 1608-1611.
[50]  王子铧, 杨紫文, 陈爱菊, 等. 原发性高血压中医证型与客观化指标相关性研究进展[J]. 环球中医药, 2022, 15(8): 1517-1522.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133