For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.
References
[1]
Das, S., Mondal, A. and Reddy, C.M. (2020) Harnessing Molecular Rotations in Plastic Crystals: A Holistic View for Crystal Engineering of Adaptive Soft Materials. Chemical Society Reviews, 49, 8878-8896. https://doi.org/10.1039/d0cs00475h
[2]
Timmermans, J. (1961) Plastic Crystals: A Historical Review. Journal of Physics and Chemistry of Solids, 18, 1-8. https://doi.org/10.1016/0022-3697(61)90076-2
[3]
Rao, C.N.R. (1985) Molecular Motion in Plastic Crystals. Proceedings of the Indian Academy of Sciences, 94, 181-199. https://doi.org/10.1007/bf02841265
[4]
Windsor, C.G., Saunderson, D.H., Sherwood, J.N., Taylor, D. and Pawley, G.S. (1978) Lattice Dynamics of Adamantane in the Disordered Phase. Journal of Physics C: Solid State Physics, 11, 1741-1759. https://doi.org/10.1088/0022-3719/11/9/013
[5]
Szcześniak, E. and Brookeman, J.R. (1983) N.M.R. Study of Solid Perfluorocyclobutane. Molecular Physics, 48, 1221-1228. https://doi.org/10.1080/00268978300100871
[6]
Rossiter, V. (1972) The Relative Permittivity Transition in Solid Camphor. Journal of Physics C: Solid State Physics, 5, 1969-1975. https://doi.org/10.1088/0022-3719/5/15/011
[7]
Hohlwein, D. (1981) Numerical Structure Factor Calculation of Orientationally Disordered Molecules. Acta Crystallographica Section A, 37, 899-903. https://doi.org/10.1107/s0567739481001927
[8]
Steenbergen, C. and de Graaf, L.A. (1979) Neutron Scattering Studies of the Solid Tetramethyl Compounds of Silicon, Germanium and Tin. Physica B+C, 96, 15-26. https://doi.org/10.1016/0378-4363(79)90096-2
[9]
de Graaf, L.A. (1969) Study of Molecular Motions in Cyclohexane and Cyclopentane by Cold-Neutron Scattering. Physica, 40, 497-516. https://doi.org/10.1016/0031-8914(69)90199-2
[10]
Lechner, R.E., Rowe, J.M., Sköld, K. and Rush, J.J. (1969) Study of Molecular Reorientation in Solid Neopentane by Quasielastic Neutron Scattering. Chemical Physics Letters, 4, 444-448. https://doi.org/10.1016/0009-2614(69)85008-6
[11]
Demus, D. (2001) Calamitic Liquid Crystals. In: Jürgen Buschow, K.H., Cahn, R.W., et al., Eds., Encyclopedia of Materials: Science and Technology, Elsevier, 880-887. https://doi.org/10.1016/b0-08-043152-6/00168-6
Maruyama, M., Bienfait, M., Liu, F.C., Liu, Y.M., Vilches, O.E. and Rieutord, F. (1993) Quasi-Liquid Molecular Layer at Solid Hydrogen Surfaces. Surface Science, 283, 333-337. https://doi.org/10.1016/0039-6028(93)90999-z
[15]
Gorbachev, M.Y. (2009) Semi-Empirical Relation between Freezing Point and Critical Point Properties of a Wide Variety of Molecular Liquids. Physics and Chemistry of Liquids, 47, 188-194. https://doi.org/10.1080/00319100701810222
[16]
Gorbachev, M.Y. (1999) Influence of Some Physico-Chemical Characteristics of Non-Associated Liquids on Sound Velocity Therein. Journal de Chimie Physique et de Physico-Chimie Biologique, 96, 923-933. https://doi.org/10.1051/jcp:1999179
[17]
Gorbachev, M.Y. (2003) Viscosity of Near-Boiling Nonassociated Liquids: Dependence on Surface Tension, Molecular Mass and Intramolecular Conformational Transitions. Physics and Chemistry of Liquids, 41, 263-270. https://doi.org/10.1080/0031910031000082057
Gorbachev, M.Y. (2006) Thermal Kinetic Energy of Liquids with Conformationally Rigid Molecules. Physics and Chemistry of Liquids, 44, 145-152. https://doi.org/10.1080/00319100500424134
[20]
Gorbachev, M.Y. (2001) Dependence of Surface Tension of Near-Boiling Non-Associated Liquids on Their Molar Volume and Some Critical Constants. Physics and Chemistry of Liquids, 39, 315-325. https://doi.org/10.1080/00319100108031665
[21]
Gorbachev, M.Y. and Dimoglo, A.S. (2013) New Semiempirical Equation Describing Evaporation and Condensation in Nonassociated Liquids. Journal of Chemistry, 2013, Article ID: 964091. https://doi.org/10.1155/2013/964091
[22]
Tong, J., de Bruyn, N., Alieva, A., Legge, E.J., Boyes, M., Song, X., et al. (2024) Crystallization of Molecular Layers Produced under Confinement onto a Surface. Nature Communications, 15, Article No. 2015. https://doi.org/10.1038/s41467-024-45900-0
[23]
Dimitrov, V.I. (2006) Theory of Fluidity of Liquids, Glass Transition, and Melting. Journal of Non-Crystalline Solids, 352, 216-231. https://doi.org/10.1016/j.jnoncrysol.2005.11.026
[24]
Peluso, F. (2023) How Does Heat Propagate in Liquids? Liquids, 3, 92-117. https://doi.org/10.3390/liquids3010009
[25]
Cachadiña, I., Mulero, A. and Tian, J. (2015) Surface Tension of Refrigerants—Selection of Data and Recommended Correlations. Journal of Physical and Chemical Reference Data, 44, Article 023104. https://doi.org/10.1063/1.4921749
[26]
Harada, M., Atake, T. and Chihara, H. (1977) Thermodynamic Properties of Polymorphic Phases of Tetramethylsilane. The Journal of Chemical Thermodynamics, 9, 523-534. https://doi.org/10.1016/0021-9614(77)90156-2
[27]
Dean, J.A. (1987) Handbook of Organic Chemistry. McGraw-Hill Book Company.
[28]
Morachevsky, A.G. and Sladkov, I.B. (1996) Physicochemical Properties of Molec-ular Inorganic Compounds.
[29]
Acree, W. and Chickos, J.S. (2016) Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies from 1880 to 2015. Part 1. C1−C10. Journal of Physical and Chemical Reference Data, 45, Article 033101. https://doi.org/10.1063/1.4948363
[30]
Sprow, F.B. and Prausnitz, J.M. (1966) Surface Tensions of Simple Liquids. Transactions of the Faraday Society, 62, Article 1097. https://doi.org/10.1039/tf9666201097
[31]
Bogdanov, S.N., Ivanov, O.P. and Kupriianova, A.V. (1976) Refrigeration Technology.
[32]
Yaws, C.L. (2008) Termophysical Properties of Chemicals and Hydrocarbons. William Andrew Inc.
[33]
Pursky, O.I. (2015) Molecular Rotation and Volume Dependence of the Thermal Conductivity in Liquid N2. Journal of Physical Studies, 19, 3602-3605. https://doi.org/10.30970/jps.19.3602
[34]
Dean, J.A. (1999) Lange’s Handbook of Chemistry. McGraw-Hill Book Company.
[35]
Nikolsky, B.P. (1963) Chemist’s Handbook.
[36]
Jasper, J.J. (1972) The Surface Tension of Pure Liquid Compounds. Journal of Physical and Chemical Reference Data, 1, 841-1010. https://doi.org/10.1063/1.3253106
[37]
Mulero, A. and Cachadiña, I. (2014) Recommended Correlations for the Surface Tension of Several Fluids Included in the REFPROP Program. Journal of Physical and Chemical Reference Data, 43, Article ID: 023104. https://doi.org/10.1063/1.4878755
[38]
Hyeon-Deuk, K. and Ando, K. (2015) Communication: Dynamical and Structural Analyses of Solid Hydrogen under Vapor Pressure. The Journal of Chemical Physics, 143, Article ID: 171102. https://doi.org/10.1063/1.4935509
[39]
Poling, B.E., Prausnitz, J.M. and O’Connell, J.P. (2001) The Properties of Gases and Liquids. McGraw-Hill.
[40]
Gharagheizi, F., Eslamimanesh, A., Tirandazi, B., Mohammadi, A.H. and Richon, D. (2011) Handling a Very Large Data Set for Determination of Surface Tension of Chemical Compounds Using Quantitative Structure–Property Relationship Strategy. Chemical Engineering Science, 66, 4991-5023. https://doi.org/10.1016/j.ces.2011.06.052
[41]
Vogt, G.J. and Pitzer, K.S. (1976) Entropy and Heat Capacity of Methane; Spin-Species Conversion. The Journal of Chemical Thermodynamics, 8, 1011-1031. https://doi.org/10.1016/0021-9614(76)90133-6
[42]
Leadbetter, A.J. and Thomas, H.E. (1965) Density and Surface Tension of Liquid Xenon and Theory of Corresponding States for the Inert Gases. Transactions of the Faraday Society, 61, 10. https://doi.org/10.1039/tf9656100010
[43]
Singh, A.N., Dyre, J.C. and Pedersen, U.R. (2021) Solid–Liquid Coexistence of Neon, Argon, Krypton, and Xenon Studied by Simulations. The Journal of Chemical Physics, 154, Article 134501. https://doi.org/10.1063/5.0045398
[44]
Marcus, Y. (2016) Solubility Parameters of Permanent Gases. Journal of Chemistry, 2016, 1-18. https://doi.org/10.1155/2016/4701919
[45]
Tong, B., Tan, Z. and Wang, S. (2008) Low Temperature Heat Capacities and Thermodynamic Properties of 2-Methyl-2-Butanol. Chinese Journal of Chemistry, 26, 1561-1566. https://doi.org/10.1002/cjoc.200890282
[46]
Rietveld, I.B., Barrio, M., Veglio, N., Espeau, P., Tamarit, J.L. and Céolin, R. (2010) Temperature and Composition-Dependent Properties of the Two-Component System D-and L-Camphor at ‘ordinary’ Pressure. Thermochimica Acta, 511, 43-50. https://doi.org/10.1016/j.tca.2010.07.023
[47]
Donnelly, R.J. and Barenghi, C.F. (1998) The Observed Properties of Liquid Helium at the Saturated Vapor Pressure. Journal of Physical and Chemical Reference Data, 27, 1217-1274. https://doi.org/10.1063/1.556028
[48]
Vybyvanets, V.I., Kosukhin, A.V., Cherenkov, A.V. and Shilkin, G.S. (2016) Production and Investigation into Properties of High-Pure Rhenium Fluorides. IOP Conference Series: Materials Science and Engineering, 112, Article 012042. https://doi.org/10.1088/1757-899x/112/1/012042
[49]
Montaño, D., Bandrés, I., Ballesteros, L.M., Lafuente, C. and Royo, F.M. (2011) Study of the Surface Tensions of Binary Mixtures of Isomeric Chlorobutanes with Methyl Tert-Butyl Ether. Journal of Solution Chemistry, 40, 1173-1186. https://doi.org/10.1007/s10953-011-9717-z
[50]
Lebedev, B., Smirnova, N., Kiparisova, Y. and Makovetsky, K. (1992) Thermodynamics of Norbornene, of Its Polymerization Process and of Polynorbornene from 0 to 400 K at Standard Pressure. Die MakromolekulareChemie, 193, 1399-1411. https://doi.org/10.1002/macp.1992.021930616
[51]
Rathjens, G.W. and Gwinn, W.D. (1953) Heat Capacities and Entropy of Cyclobutane1. Journal of the American Chemical Society, 75, 5629-5633. https://doi.org/10.1021/ja01118a047
[52]
Aston, J.G., Fink, H.L., Tooke, J.W. and Cines, M.R. (1947) Melting Point Calorimeter for Purity Determinations. Analytical Chemistry, 19, 218-221. https://doi.org/10.1021/ac60004a002
Hannachi, N., Elwej, R., Roisnel, T. and Hlel, F. (2023) Effect of Changing Anion on the Crystalline Structure, Crystal Structure, Hirschfield Surface, IR and NMR Spectroscopy of Organic Salts and Hybrid Compounds: C6H4(NH3)2Cl2 (I), β-[C6H10N2]2ZnCl4 (II), Respectively. Open Journal of Inorganic Chemistry, 13, 1-24.
[55]
Oh, M., Yoon, Y., Moon, D. and Jang, E. (2021) Effect of Improving the Slip Properties of the Organic Materials on the Inorganic Filler in Heat Dissipated Pad. Materials Sciences and Applications, 12, 595-602. https://doi.org/10.4236/msa.2021.1212039
[56]
Nishikawa, K., Fujii, K., Yamada, T., Yoshizawa-Fujita, M. and Matsumoto, K. (2022) Free Ionic Rotators on Crystal Lattice Points—Structures of Ionic Plastic Crystals. Chemical Physics Letters, 803, Article 139771. https://doi.org/10.1016/j.cplett.2022.139771
[57]
Heuer, A.H. (2008) Oxygen and Aluminum Diffusion in α-Al2O3: How Much Do We Really Understand? Journal of the European Ceramic Society, 28, 1495-1507. https://doi.org/10.1016/j.jeurceramsoc.2007.12.020