全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有多时滞的奇异Markov跳变正系统的稳定性分析
Stability Analysis for a Class of Positive Singular Markov Jump Systems with Multiple Time Delays

DOI: 10.12677/aam.2024.139390, PP. 4093-4098

Keywords: 奇异系统,Markov跳变正系统,随机稳定,Lyapnov函数
Singular System
, Positive Markov Jump System, Stochastic Stability, Lyapunov Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论了一类奇异Markov跳变正系统的稳定性。所讨论的系统带有多重时滞。借助Lyapnov函数,本文给出了一些充分条件,这些充分条件保证所讨论的系统是正系统。另外,给出的充分条件也保证所讨论的系统是正则、无脉冲和随机稳定的。
This paper discusses the stability of a class of positive singular Markov jump systems. The systems considered in this paper have multiple time delays. By employing the Lyapunov function, this paper gives some sufficient conditions. These sufficient conditions ensure that the considered systems are positive. In addition, the given sufficient conditions also ensure that the investigated systems are regular, impulse-free, and stochastically stable.

References

[1]  Li, S., Zhang, J., Chen, Y. and Zhang, R. (2018) Robust Stochastic Stabilization for Positive Markov Jump Systems with Actuator Saturation. Circuits, Systems, and Signal Processing, 38, 625-642.
https://doi.org/10.1007/s00034-018-0878-5

[2]  Wang, H., Qi, W., Zhang, L., Cheng, J. and Kao, Y. (2020) Stability and Stabilization for Positive Systems with Semi-Markov Switching. Applied Mathematics and Computation, 379, Article 125252.
https://doi.org/10.1016/j.amc.2020.125252

[3]  Wang, L., Wu, Z. and Shen, Y. (2021) Asynchronous Mean Stabilization of Positive Jump Systems with Piecewise-Homogeneous Markov Chain. IEEE Transactions on Circuits and Systems II: Express Briefs, 68, 3266-3270.
https://doi.org/10.1109/tcsii.2021.3064388

[4]  Li, L., Qi, W., Chen, X., Kao, Y., Gao, X. and Wei, Y. (2018) Stability Analysis and Control Synthesis for Positive Semi-Markov Jump Systems with Time-Varying Delay. Applied Mathematics and Computation, 332, 363-375.
https://doi.org/10.1016/j.amc.2018.02.055

[5]  Ait Rami, M. and Napp, D. (2014) Positivity of Discrete Singular Systems and Their Stability: An LP-Based Approach. Automatica, 50, 84-91.
https://doi.org/10.1016/j.automatica.2013.10.011

[6]  Cui, Y., Feng, Z., Shen, J. and Chen, Y. (2017) L-Gain Analysis for Positive Singular Time-Delay Systems. Journal of the Franklin Institute, 354, 5162-5175.
https://doi.org/10.1016/j.jfranklin.2017.05.006

[7]  Cui, Y., Shen, J., Feng, Z. and Chen, Y. (2018) Stability Analysis for Positive Singular Systems with Time-Varying Delays. IEEE Transactions on Automatic Control, 63, 1487-1494.
https://doi.org/10.1109/tac.2017.2749524

[8]  Thuan, D.D. and Thu, N.T. (2024) Stability and Stabilizability of Positive Switched Discrete-Time Linear Singular Systems. Systems & Control Letters, 185, Article 105725.
https://doi.org/10.1016/j.sysconle.2024.105725

[9]  Wang, J., Gao, A., Wang, K., Yang, J. and Li, Q. (2024) Event-Based Filter Design for Singular Positive Markov Jump Systems with Parameter Uncertainty and Measurement Delay. Journal of the Franklin Institute, 361, Article 106818.
https://doi.org/10.1016/j.jfranklin.2024.106818

[10]  Qi, W. and Gao, X. (2015) State Feedback Controller Design for Singular Positive Markovian Jump Systems with Partly Known Transition Rates. Applied Mathematics Letters, 46, 111-116.
https://doi.org/10.1016/j.aml.2015.02.016

[11]  Zhang, D., Du, B., Jing, Y. and Sun, X. (2022) Investigation on Stability of Positive Singular Markovian Jump Systems with Mode-Dependent Derivative-Term Coefficient. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 1385-1394.
https://doi.org/10.1109/tsmc.2020.3020271

[12]  Zhang, D., Zhang, Q. and Du, B. (2017) Positivity and Stability of Positive Singular Markovian Jump Time-Delay Systems with Partially Unknown Transition Rates. Journal of the Franklin Institute, 354, 627-649.
https://doi.org/10.1016/j.jfranklin.2016.09.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133