|
Bioprocess 2024
高产PSA的基因工程菌株构建
|
Abstract:
聚唾液酸(PSA)是一种具有重要生物功能的高分子多糖,广泛存在于自然界和人体中。由于其低免疫原性和良好的生物降解性,PSA被认为是一种理想的药物控释材料。本研究以大肠杆菌K87为出发菌株,通过过表达Neu5AC合成路径中的关键基因neuD,构建了高效合成PSA的基因工程菌株。通过摇瓶发酵和发酵罐发酵实验,验证了不同拷贝数neuD基因对PSA产量的影响。结果表明,高拷贝数表达载体能显著提高PSA的产量,其中E. coli K87-6菌株在5 L发酵罐中PSA产量达8.4 g/L,比出发菌株提高27%。本研究构建的高效合成PSA的基因工程菌株在工业生产中具有广泛的应用前景。
Polysialic acid (PSA) is a high-molecular-weight polysaccharide with significant biological functions, widely found in nature and the human body. Due to its low immunogenicity and good biodegradability, PSA is considered an ideal material for drug delivery systems. In this study, Escherichia coli K87 was used as the starting strain to construct genetically engineered strains for efficient PSA production by overexpressing the key gene neuD in the Neu5AC synthesis pathway. The effects of different copy numbers of the neuD gene on PSA yield were verified through shake flask and fermenter experiments. The results showed that high-copy-number expression vectors significantly increased PSA yield, with the E. coli K87-6 strain achieving a PSA yield of 8.4 g/L in a 5 L fermenter, which is 27% higher than the starting strain. The genetically engineered strains constructed in this study have broad application prospects in industrial production.
[1] | McGowen, M.M., Vionnet, J. and Vann, W.F. (2001) Elongation of Alternating α2,8/2,9 Polysialic Acid by the Escherichia coli K92 Polysialyltransferase. Glycobiology, 11, 613-620. https://doi.org/10.1093/glycob/11.8.613 |
[2] | Azurmendi, H.F., Vionnet, J., Wrightson, L., Trinh, L.B., Shiloach, J. and Freedberg, D.I. (2007) Extracellular Structure of Polysialic Acid Explored by on Cell Solution NMR. Proceedings of the National Academy of Sciences, 104, 11557-11561. https://doi.org/10.1073/pnas.0704404104 |
[3] | El Maarouf, A., Petridis, A.K. and Rutishauser, U. (2006) Use of Polysialic Acid in Repair of the Central Nervous System. Proceedings of the National Academy of Sciences, 103, 16989-16994. https://doi.org/10.1073/pnas.0608036103 |
[4] | Vu, B., Chen, M., Crawford, R.J. and Ivanova, E.P. (2009) Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules, 14, 2535-2554. https://doi.org/10.3390/molecules14072535 |
[5] | Kleene, R. and Schachner, M. (2004) Glycans and Neural Cell Interactions. Nature Reviews Neuroscience, 5, 195-208. https://doi.org/10.1038/nrn1349 |
[6] | 金城, 张树政. 糖生物学与糖工程的兴起与前景[J]. 生物工程进展, 1995(3): 12-17. |
[7] | 吴剑荣, 詹晓北, 郑志永, 等. 聚唾液酸与唾液酸的研究进展[J]. 生物加工过程, 2007, 5(1): 20-26. |
[8] | 张世民. 复合糖末端唾液酸功能的双重性——受体作用和掩蔽作用[J]. 生命的化学(中国生物化学会通讯), 1991(5): 17-19. |
[9] | Qiu, A., Wang, Y., Zhang, G. and Wang, H. (2022) Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers, 14, Article 3217. https://doi.org/10.3390/polym14153217 |
[10] | Wang, B., McVeagh, P., Petocz, P. and Brand-Miller, J. (2003) Brain Ganglioside and Glycoprotein Sialic Acid in Breastfed Compared with Formula-Fed Infants. The American Journal of Clinical Nutrition, 78, 1024-1029. https://doi.org/10.1093/ajcn/78.5.1024 |
[11] | 许杨, 陈芳, 林白雪, 陶勇, 全细胞催化生产N-乙酰神经氨酸的条件优化[J]. 微生物学通报, 2013, 40(8): 1331-1338. |
[12] | 乔阳. 唾液酸与婴儿生长发育的研究[D]: [博士学位论文]. 苏州: 苏州大学, 2013. |
[13] | Sapoń, K., Janas, T., Sikorski, A.F. and Janas, T. (2019) Polysialic Acid Chains Exhibit Enhanced Affinity for Ordered Regions of Membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1861, 245-255. https://doi.org/10.1016/j.bbamem.2018.07.008 |
[14] | Iqbal, S., Walsh, T.R., Rodger, A. and Packer, N.H. (2020) Interaction between Polysialic Acid and the MARCKS-ED Peptide at the Molecular Level. ACS Chemical Neuroscience, 11, 1944-1954. https://doi.org/10.1021/acschemneuro.0c00139 |
[15] | 李国顺. 大肠杆菌生物合成长链聚唾液酸的工艺研究[D]. [硕士学位论文]. 无锡: 江南大学, 2012. |
[16] | Wang, C., Chang, H., Liu, X., Zhao, H., Guo, J., Peng, S., et al. (2024) Terminal-Enhanced Polymerization in the Biosynthesis of Polysialic Acid. Fermentation, 10, Article 64. https://doi.org/10.3390/fermentation10010064 |
[17] | Kim, M.J., Hennen, W.J., Sweers, H.M. and Wong, C.H. (1988) Enzymes in Carbohydrate Synthesis: N-Acetylneuraminic Acid Aldolase Catalyzed Reactions and Preparation of N-Acetyl-2-Deoxy-D-Neuraminic Acid Derivatives. Journal of the American Chemical Society, 110, 6481-6486. https://doi.org/10.1021/ja00227a031 |
[18] | Vimr, E.R., Kalivoda, K.A., Deszo, E.L. and Steenbergen, S.M. (2004) Diversity of Microbial Sialic Acid Metabolism. Microbiology and Molecular Biology Reviews, 68, 132-153. https://doi.org/10.1128/mmbr.68.1.132-153.2004 |
[19] | Zhao, L., Tian, R., Shen, Q., Liu, Y., Liu, L., Li, J., et al. (2019) Pathway Engineering of Bacillus subtilis for Enhanced N‐Acetylneuraminic Acid Production via Whole‐Cell Biocatalysis. Biotechnology Journal, 14, Article 1800682. https://doi.org/10.1002/biot.201800682 |
[20] | Ishikawa, M. and Koizumi, S. (2010) Microbial Production of N-Acetylneuraminic Acid by Genetically Engineered Escherichia coli. Carbohydrate Research, 345, 2605-2609. https://doi.org/10.1016/j.carres.2010.09.034 |
[21] | Kang, J., Gu, P., Wang, Y., Li, Y., Yang, F., Wang, Q., et al. (2012) Engineering of an N-Acetylneuraminic Acid Synthetic Pathway in Escherichia coli. Metabolic Engineering, 14, 623-629. https://doi.org/10.1016/j.ymben.2012.09.002 |
[22] | Lin, B., Zhang, Z., Liu, W., Dong, Z. and Tao, Y. (2013) Enhanced Production of N-Acetyl-D-Neuraminic Acid by Multi-Approach Whole-Cell Biocatalyst. Applied Microbiology and Biotechnology, 97, 4775-4784. https://doi.org/10.1007/s00253-013-4754-8 |
[23] | Barrett, B., Ebah, L. and Roberts, I.S. (2002) Genomic Structure of Capsular Determinants. In: Hacker, J. and Kaper, J.B., Eds., Pathogenicity Islands and the Evolution of Pathogenic Microbes, Springer, 137-155. https://doi.org/10.1007/978-3-662-09217-0_8 |
[24] | Song, L., Zhou, H., Cai, X., Li, C., Liang, J. and Jin, C. (2011) NeuA O-Acetylesterase Activity Is Specific for Cmp-Activated O-Acetyl Sialic Acid in Streptococcus suis Serotype 2. Biochemical and Biophysical Research Communications, 410, 212-217. https://doi.org/10.1016/j.bbrc.2011.05.092 |
[25] | Steenbergen, S.M., Lee, Y., Vann, W.F., Vionnet, J., Wright, L.F. and Vimr, E.R. (2006) Separate Pathways for O Acetylation of Polymeric and Monomeric Sialic Acids and Identification of Sialyl O-Acetyl Esterase in Escherichia coli K1. Journal of Bacteriology, 188, 6195-6206. https://doi.org/10.1128/jb.00466-06 |
[26] | Ferrero, M.Á. and Aparicio, L.R. (2010) Biosynthesis and Production of Polysialic Acids in Bacteria. Applied Microbiology and Biotechnology, 86, 1621-1635. https://doi.org/10.1007/s00253-010-2531-5 |
[27] | 高学金, 刘广生, 程丽, 等. 发酵过程葡萄糖在线检测系统的研制[J]. 分析化学, 2012, 40(12): 1945-1949. |
[28] | 孟根达来, 张娜, 解红霞. 水杨酸-次氯酸钠分光光度法测定露蜂房总氮含量[J]. 中国药师, 2017, 20(2): 277-280, 286. |