全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2024 

我国重大战略区域数字普惠金融发展的区域差异及收敛性研究
Research on Regional Differences and Convergence of Digital Inclusive Finance Development in Major Strategic Regions of China

DOI: 10.12677/fin.2024.145172, PP. 1678-1692

Keywords: 数字普惠金融,区域差异,空间收敛,重大战略区域
Digital Inclusive Finance
, Regional Differences, Spatial Convergence, Major Strategic Areas

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于2011~2021年全国337个城市的面板数据及北京大学数字普惠金融指数,运用Dagum基尼系数及其分解法研究全国及各重大战略区域数字普惠金融水平的差异情况,同时通过变异系数和空间计量模型开展σ收敛和β收敛分析,为我国及各重大战略区域数字普惠金融的发展提供量化支撑,对促进我国数字普惠金融水平整体提升和区域经济协调发展具有政策启示。研究发现:全国数字普惠金融水平显著上升,总体上表现为“东强西弱,北高南低”的空间格局;各重大战略区域数字普惠金融发展差异较为明显,南北方区域间差异是总体区域差异的主要来源;全国及各区域数字普惠金融发展均存在σ收敛、绝对β收敛和条件β收敛,在条件β收敛分析中,区域内经济水平、传统金融发展水平、人口密度、产业结构对各区域数字普惠金融水平增长率有显著的异质性影响。
Based on the panel data of 337 cities in China from 2011~2021 and the digital inclusive finance index of Peking University, this paper uses Dagum Gini coefficient and its decomposition method to study the differences in the level of digital inclusive finance across the country and in major strategic regions. At the same time, it carries out σ convergence and β convergence analysis through variation coefficient and spatial econometric model, providing quantitative support for the development of digital inclusive finance in China and in major strategic regions, and has policy implications for promoting the overall improvement of digital inclusive finance in China and the coordinated development of regional economy. Research has found that the level of digital inclusive finance in China has significantly increased, generally manifested as a spatial pattern of “strong in the east and weak in the west, high in the north and low in the south”; there are significant differences in the development of digital inclusive finance among major strategic regions, with regional disparities between the north and south being the main source of overall regional differences; the development of digital inclusive finance in China and various regions exhibits σ convergence, absolute β convergence, and conditional β convergence. In the analysis of conditional β convergence, the economic level, traditional financial development level, population density, and industrial structure within the region have significant heterogeneous effects on the growth rate of digital inclusive finance in each region.

References

[1]  李婵娟, 吕优, 钟雨欣. 长江经济带数字普惠金融发展的区域差异、动态演进与收敛性考察[J]. 统计与决策, 2022, 38(20): 132-138.
[2]  张德钢, 朱旭森. 中国九大城市群数字普惠金融发展的时空差异及动态演进[J]. 当代经济管理, 2020, 42(12): 88-96.
[3]  Corrado, G. and Corrado, L. (2017) Inclusive Finance for Inclusive Growth and Development. Current Opinion in Environmental Sustainability, 24, 19-23.
https://doi.org/10.1016/j.cosust.2017.01.013
[4]  Kim, D., Yu, J. and Hassan, M.K. (2018) Financial Inclusion and Economic Growth in OIC Countries. Research in International Business and Finance, 43, 1-14.
https://doi.org/10.1016/j.ribaf.2017.07.178
[5]  Sarma, M. (2008) Index of Financial Inclusion. Working Paper No. 215, Indian Council for Research on International Economic Relations.
[6]  Arora, R.U. (2010) Measuring Financial Access. Discussion Papers in Economics Economics: 201007, Griffith University.
[7]  李建军, 韩珣. 普惠金融、收入分配和贫困减缓——推进效率和公平的政策框架选择[J]. 金融研究, 2019(3): 129-148.
[8]  沈丽, 张好圆, 李文君. 中国普惠金融的区域差异及分布动态演进[J]. 数量经济技术经济研究, 2019, 36(7): 62-80.
[9]  孙英杰, 林春. 普惠金融发展的地区差异、收敛性及影响因素研究——基于中国省级面板数据的检验[J]. 经济理论与经济管理, 2018(11): 70-80.
[10]  郭峰, 王靖一, 王芳, 等. 测度中国数字普惠金融发展: 指数编制与空间特征[J]. 经济学(季刊), 2020, 19(4): 1401-1418.
[11]  吴金旺, 郭福春, 顾洲一. 数字普惠金融能否显著减缓贫困?——来自浙江嘉兴调研的行为数据[J]. 浙江学刊, 2019(4): 140-151.
[12]  梁榜, 张建华. 数字普惠金融发展能激励创新吗?——来自中国城市和中小企业的证据[J]. 当代经济科学, 2019, 41(5): 74-86.
[13]  易行健, 周利. 数字普惠金融发展是否显著影响了居民消费——来自中国家庭的微观证据[J]. 金融研究, 2018(11): 47-67.
[14]  宋晓玲. 数字普惠金融缩小城乡收入差距的实证检验[J]. 财经科学, 2017(6): 14-25.
[15]  向洁, 胡青江, 闫海龙. 数字普惠金融发展的区域差异及动态演进[J]. 技术经济与管理研究, 2021(2): 65-70.
[16]  葛和平, 朱卉雯. 中国数字普惠金融的省域差异及影响因素研究[J]. 新金融, 2018(2): 47-53.
[17]  Dagum, C. (1998) A New Approach to the Decomposition of the Gini Income Inequality Ratio. Empirical Economics, 22, 515-531.
https://doi.org/10.1007/BF01205777
[18]  张卓群, 张涛, 冯冬发. 中国碳排放强度的区域差异、动态演进及收敛性研究[J]. 数量经济技术经济研究, 2022, 39(4): 67-87.
[19]  于伟, 张鹏, 姬志恒. 中国城市群生态效率的区域差异、分布动态和收敛性研究[J]. 数量经济技术经济研究, 2021, 38(1): 23-42.
[20]  张勋, 万广华, 张佳佳, 等. 数字经济、普惠金融与包容性增长[J]. 经济研究, 2019, 54(8): 71-86.
[21]  龚沁宜, 成学真. 数字普惠金融、农村贫困与经济增长[J]. 甘肃社会科学, 2018(6): 139-145.
[22]  郝云平, 雷汉云. 数字普惠金融推动经济增长了吗?——基于空间面板的实证[J]. 当代金融研究, 2018(3): 90-101.
[23]  LeSage, J. and Pace, R.K. (2009) Introduction to Spatial Econometrics. Chapman and Hall/CRC.
[24]  金春雨, 王伟强. 我国高技术产业空间集聚及影响因素研究——基于省级面板数据的空间计量分析[J]. 科学学与科学技术管理, 2015, 36(7): 49-56.
[25]  马丹, 谭露. 数字普惠金融使用深度发展的动态演进、区域差异和空间收敛[J]. 华北金融, 2022(12): 41-53.
[26]  焦云霞. 中国数字普惠金融: 发展逻辑、时空格局与区域差异[J]. 兰州大学学报(社会科学版), 2022, 50(3): 52-66.
[27]  焦云霞. 中国数字普惠金融发展的空间集聚与收敛性研究[J]. 金融发展, 2020(2): 70-87.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133