|
渔用可生物降解材料的研究现状及发展趋势
|
Abstract:
海洋渔业的技术进步,为渔具及渔具材料的技术升级提供了支撑。以合成纤维加工的传统渔具及渔具材料无法降解,给海洋生态带来了严重负担。为了减轻不可降解渔具造成的“幽灵捕捞”、“白色污染”等一系列环境问题,开发生物可降解渔具材料已成为当下渔具材料研究的热点。目前,渔用生物可降解渔具材料主要包括天然纤维、微生物聚合物以及合成生物降解塑料等。本文介绍了目前国内外常见的淀粉基材料、聚己内酯(PCL)、聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)、聚对苯二甲酸–己二酸丁二醇酯(PBAT)等渔用可降解高分子材料,分析了上述材料的性能、研究现状及发展趋势。渔用新型生物可降解渔具材料可替代传统不可降解渔具材料,上述材料在渔业的创新应用有助于逐步解决“幽灵捕捞”、“白色污染”等一系列环境问题,发展生态渔业,促进现代渔业高质量发展。
The technological progress of marine fisheries has provided support for the technological upgrading of fishing gear and fishing gear materials. Traditional fishing gear and gear materials processed with synthetic fibers cannot be degraded, posing a serious burden on marine ecology. In order to alleviate a series of environmental problems such as ghost fishing and white pollution caused by non degradable fishing gear, the development of biodegradable fishing gear materials has become a hot topic in current research on fishing gear materials. At present, biodegradable fishing gear materials mainly include natural fibers, microbial polymers, and synthetic biodegradable plastics. This article introduces commonly used starch based materials, polycaprolactone (PCL), polylactic acid (PLA), polybutylene succinate (PBS), polybutylene terephthalate (PBAT) and other biodegradable polymer materials for fishing both domestically and internationally. The properties, research status, and development trends of these materials are analyzed. The new biodegradable fishing gear materials used in fishing can replace traditional non degradable fishing gear materials. The innovative application of these materials in fishing can help gradually solve a series of environmental problems such as “ghost fishing” and “white pollution”, develop ecological fishing, and promote the high-quality development of modern fishing.
[1] | 吕方, 朱光明, 刘代军. 可完全生物降解材料的应用进展[J]. 塑料科技, 2007(7): 92-97. |
[2] | Ruan, G. and Feng, S. (2003) Preparation and Characterization of Poly(Lactic Acid)-Poly(Ethylene Glycol)-Poly(Lactic Acid) (PLA-PEG-PLA) Microspheres for Controlled Release of Paclitaxel. Biomaterials, 24, 5037-5044. https://doi.org/10.1016/s0142-9612(03)00419-8 |
[3] | Amy, L., Hollman, P. and Mendoza-Hill, J. (2017) Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety. |
[4] | 马海燕, 邵小群, 马海军, 等. 大直径生物降解聚合物单丝的研究与进展[J]. 纺织导报, 2014(4): 54-57. |
[5] | 余雯雯, 石建高, 陈晓雪, 等. MHMWPE/iPP/EPDM渔用单丝的力学性能与动态力学行为[J]. 水产学报, 2017, 41(3): 473-479. |
[6] | Yu, M., Tang, Y., Min, M., Herrmann, B., Cerbule, K., Liu, C., et al. (2023) Comparison of Physical Properties and Fishing Performance between Biodegradable PLA and Conventional PA Trammel Nets in Grey Mullet (Mugil cephalus) and Red-Lip Mullet (Liza haematocheila) Fishery. Marine Pollution Bulletin, 195, Article 115545. https://doi.org/10.1016/j.marpolbul.2023.115545 |
[7] | Yu, W.W., Shi, J.G., Chen, X.X., et al. (2016) Study on the Suitability for Fishing Fibers Based on Dynamic Mechanical Analysis. Marine Fisheries, 38, 533-539. |
[8] | Zhou, A.Z., Zhang, Y., Yu, Y.F., et al. (2013) Experimental Research on Trawl Performance of Braided Polyethylene Netting Twine Replacing Common Polyethylene Twisting. Marine Fisheries, 35, 95-101. |
[9] | 张闯, 柳乃奎, 迟延娜, 等. 塑料制品在可持续发展中的前景——可降解塑料的环境友好性[J]. 健康教育与健康促进, 2019, 14(6): 486-489. |
[10] | 王琳霞. 生物降解高分子材料[J]. 塑料科技, 2002(1): 37-41. |
[11] | 王国利, 徐军, 郭宝华. 可生物降解聚丁二酸丁二醇酯及其共聚物的合成及改性研究进展[J]. 高分子通报, 2011(4): 99-109. |
[12] | Artham, T. and Doble, M. (2007) Biodegradation of Aliphatic and Aromatic Polycarbonates. Macromolecular Bioscience, 8, 14-24. https://doi.org/10.1002/mabi.200700106 |
[13] | 董翔宇, 单子豪, 袁文静, 等. 海洋环境微塑料污染生态影响及生物降解研究进展[J]. 中国资源综合利用, 2020, 38(11): 122-124. |
[14] | 钱伯章, 朱建芳. 生物可降解塑料发展现状与前景[J]. 现代化工, 2008(11): 82-85+87. |
[15] | 李泽天, 张欣华, 韩释剑, 等. 聚丁二酸丁二醇酯的改性研究进展[J]. 石油化工高等学校学报, 2016, 29(6): 1-5+17. |
[16] | 谢宝君, 梁文耀, 宋霜霜, 等. 可生物降解塑料的降解性能研究进展[J]. 工程塑料应用, 2012, 40(7): 85-88. |
[17] | Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., et al. (2011) An Overview of Degradable and Biodegradable Polyolefins. Progress in Polymer Science, 36, 1015-1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002 |
[18] | Bhatia, A., Gupta, R.K., et al. (2007) Compatibility of Biodegradable Poly(Lactic Acid) (PLA) and Poly(Butylene Succinate) (PBS) Blends for Packaging Application. RMIT University. |
[19] | 李泽天. PBS/碱式硫酸镁晶须复合材料的制备与性能研究[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2018. |
[20] | Rajgond, V., Mohite, A., More, N. and More, A. (2023) Biodegradable Polyester-Polybutylene Succinate (PBS): A Review. Polymer Bulletin, 81, 5703-5752. https://doi.org/10.1007/s00289-023-04998-w |
[21] | Liu, B., Guan, T., Wu, G., Fu, Y. and Weng, Y. (2022) Biodegradation Behavior of Degradable Mulch with Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Poly(Butylene Succinate) (PBS) in Simulation Marine Environment. Polymers, 14, Article 1515. https://doi.org/10.3390/polym14081515 |
[22] | Kim, S., Kim, P., Lim, J., An, H. and Suuronen, P. (2016) Use of Biodegradable Driftnets to Prevent Ghost Fishing: Physical Properties and Fishing Performance for Yellow Croaker. Animal Conservation, 19, 309-319. https://doi.org/10.1111/acv.12256 |
[23] | Park, S., Bae, B., Cha, B., Kim, Y.J. and Kwak, H.W. (2023) Development of Poly(Butylene Adipate-Co-Butylene Succinate-Co-Ethylene Adipate-Co-Ethylene Succinate) (PBEAS) Net Twine as Biodegradable Fishing Gear. Marine Pollution Bulletin, 194, Article 115295. https://doi.org/10.1016/j.marpolbul.2023.115295 |
[24] | Liu, T., Huang, D., Xu, P., Lu, B., Zhen, Z., Zheng, W., et al. (2022) Study on Composting and Seawater Degradation Properties of Diethylene Glycol-Modified Poly(Butylene Succinate) Copolyesters. e-Polymers, 22, 615-626. https://doi.org/10.1515/epoly-2022-0057 |
[25] | 潘文静, 白桢慧, 苏婷婷, 等. 生物降解塑料聚乳酸(PLA)的改性研究进展[J]. 应用化工, 2017, 46(5): 977-981. |
[26] | 舒爱艳, 张敏, 余雯雯, 等. 可生物降解PLA刺网与传统PA刺网的物理性能和捕捞效率的比较分析(英文) [J]. 海洋渔业, 2021, 43(1): 93-103. |
[27] | Kalita, N.K., Nagar, M.K., Mudenur, C., Kalamdhad, A. and Katiyar, V. (2019) Biodegradation of Modified Poly(Lactic Acid) Based Biocomposite Films under Thermophilic Composting Conditions. Polymer Testing, 76, 522-536. https://doi.org/10.1016/j.polymertesting.2019.02.021 |
[28] | Gexia, W., Dan, H., Wei, Z., et al. (2020) Degradation Performance of Typical Biodegradable Polyesters in Seawater. Journal of Functional Polymers, 33, 492-499. |
[29] | Chen, X., Wang, L., Shi, J., Shi, H. and Liu, Y. (2011) Environmental Degradation of Starch/Poly(Lactic Acid) Composite in Seawater. Polymers and Polymer Composites, 19, 559-566. https://doi.org/10.1177/096739111101900705 |
[30] | Guzman-Sielicka, A., Janik, H. and Sielicki, P. (2012) Proposal of New Starch-Blends Composition Quickly Degradable in Marine Environment. Journal of Polymers and the Environment, 21, 802-806. https://doi.org/10.1007/s10924-012-0558-7 |
[31] | Taiatele, I., Dal Bosco, T.C., Faria-Tischer, P.C.S., Bilck, A.P., Yamashita, F., Bertozzi, J., et al. (2019) Abiotic Hydrolysis and Compostability of Blends Based on Cassava Starch and Biodegradable Polymers. Journal of Polymers and the Environment, 27, 2577-2587. https://doi.org/10.1007/s10924-019-01541-9 |
[32] | 闵明华, 李雄, 黄洪亮, 等. 渔用纳米蒙脱土改性聚乳酸单丝降解性能[J]. 海洋渔业, 2017, 39(6): 690-695. |
[33] | 闵明华, 陈晓蕾, 余雯雯, 等. 渔用纳米蒙脱土改性聚乳酸纤维制备及性能[J]. 海洋渔业, 2014, 36(6): 557-564. |
[34] | 陈晓蕾, 石建高, 王磊, 等. 聚乳酸/淀粉复合材料在海水中的降解性能[J]. 海洋渔业, 2009, 31(4): 420-425. |
[35] | 杨晓倩, 张俊贵, 王小昌. 碳酸钙填充改性PBAT的性能研究[J]. 石河子科技, 2024(2): 63-65. |
[36] | 刘金凤, 杨勇, 李永泉, 等. 木质素在合成可降解高分子材料中的应用研究进展[J]. 工程塑料应用, 2024, 52(2): 175-180. |
[37] | 王祖芳, 黄东, 王明亮. 生物可降解材料PBAT的生产现状及其研究进展[J]. 辽宁化工, 2024, 53(3): 416-422. |
[38] | 邱昱. 渔用淀粉改性聚己二酸/对苯二甲酸丁二醇酯材料的降解性能分析及其在蟹笼中的应用研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2023. |
[39] | 舒爱艳. 蒙脱土(MMT)改性渔用可降解材料的结构与性能研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2023. |
[40] | Elfick, A.P.D. (2002) Poly(ε-Caprolactone) as a Potential Material for a Temporary Joint Spacer. Biomaterials, 23, 4463-4467. https://doi.org/10.1016/s0142-9612(02)00163-1 |
[41] | 陈晓蕾, 石建高, 史航, 等. 聚己内酯在海水中降解性能的研究[J]. 海洋渔业, 2010, 32(1): 82-88. |
[42] | Suzuki, M., Tachibana, Y., Oba, K., Takizawa, R. and Kasuya, K. (2018) Microbial Degradation of Poly(ε-Caprolactone) in a Coastal Environment. Polymer Degradation and Stability, 149, 1-8. https://doi.org/10.1016/j.polymdegradstab.2018.01.017 |
[43] | Hino, S., Kawasaki, N., Yamano, N., Nakamura, T. and Nakayama, A. (2023) Effects of Particle Size on Marine Biodegradation of Poly(l-Lactic Acid) and Poly(ε-Caprolactone). Materials Chemistry and Physics, 303, Article 127813. https://doi.org/10.1016/j.matchemphys.2023.127813 |
[44] | 程文喜, 苗蔚, 白深奥, 等. 混合淀粉/聚乙烯醇复合膜的制备与性能研究[J]. 塑料科技, 2024, 52(3): 91-94. |
[45] | 杨华军. 淀粉/聚丙烯复合材料研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2010. |
[46] | Yu, X., Chen, L., Jin, Z. and Jiao, A. (2021) Research Progress of Starch-Based Biodegradable Materials: A Review. Journal of Materials Science, 56, 11187-11208. https://doi.org/10.1007/s10853-021-06063-1 |
[47] | 牟振亮. 淀粉改性生物基PBAT生物降解塑料的研发[J]. 潍坊: 山东力群环保科技有限公司, 2021-05-13. |
[48] | 石红锦, 魏文博, 栾道琦, 等. 热塑性淀粉/聚乳酸完全生物降解塑料的制备[J]. 橡塑技术与装备, 2020, 46(4): 45-48. |
[49] | Nayak, S.K. (2010) Biodegradable PBAT/Starch Nanocomposites. Polymer-Plastics Technology and Engineering, 49, 1406-1418. https://doi.org/10.1080/03602559.2010.496397 |
[50] | Mohammadi Nafchi, A., Moradpour, M., Saeidi, M. and Alias, A.K. (2013) Thermoplastic Starches: Properties, Challenges, and Prospects. Starch-Stärke, 65, 61-72. https://doi.org/10.1002/star.201200201 |
[51] | 张坤玉, 冉祥海, 吴航, 等. 新型热塑性淀粉的制备和性能[J]. 高等学校化学学报, 2009, 30(8): 1662-1667. |
[52] | Hulleman, S.H.D., Janssen, F.H.P. and Feil, H. (1998) The Role of Water during Plasticization of Native Starches. Polymer, 39, 2043-2048. https://doi.org/10.1016/s0032-3861(97)00301-7 |
[53] | Gabriel, B., Tomasz, K., Malgorzata, P., et al. (2020) Effect of Flax Fibers Addition on the Mechanical Properties and Biodegradability of Biocomposites Based on Thermoplastic Starch. Archives of Environmental Protection, 46, 74-82. |
[54] | Averous, L., Fringant, C. and Moro, L. (2001) Starch-Based Biodegradable Materials Suitable for Thermoforming Packaging. Starch-Stärke, 53, 368-371. https://doi.org/10.1002/1521-379x(200108)53:8<368::aid-star368>3.0.co;2-w |
[55] | 张莉, 梁多平, 侯理达. 植物纤维/聚乳酸复合材料的研究进展[J]. 塑料工业, 2023, 51(S1): 22-28. |
[56] | Chen, J., Huang, Y., Deng, L., Jiang, H., Yang, Z., Yang, R., et al. (2023) Preparation and Research of PCL/Cellulose Composites: Cellulose Derived from Agricultural Wastes. International Journal of Biological Macromolecules, 235, Article 123785. https://doi.org/10.1016/j.ijbiomac.2023.123785 |
[57] | 魏佳乐, 韩卿, 庄堃, 等. 纤维素基填料制备PBS可降解复合材料的研究进展[J]. 中国造纸, 2023, 42(11): 133-143. |
[58] | 吕瑶. 改性纤维素/PBAT复合薄膜的制备及性能研究[D]: [硕士学位论文]. 贵阳: 贵州师范大学, 2024. |
[59] | 韩宁宁. 纤维素基生物降解塑料的制备及其性能研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2019. |
[60] | Lee, J., Kim, S., Park, S.B., Shin, M., Kim, S., Kim, M., et al. (2024) Mimicking Real-Field Degradation of Biodegradable Plastics in Soil and Marine Environments: From Product Utility to End-of-Life Analysis. Polymer Testing, 131, Article 108338. https://doi.org/10.1016/j.polymertesting.2024.108338 |
[61] | 石建高, 王旭阳, 谢程兰, 等. 一种环保型聚拢吞拿鱼工具[P]. 中国专利, CN202211517657.6. 2024-06-11. |