全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高速公路空中交通传感器布设优化研究
Research on Optimization of Highway Aerial Traffic Sensor Deployment

DOI: 10.12677/ojtt.2024.135031, PP. 275-282

Keywords: 智能交通,高速公路,空中交通传感器,传感器布设优化
Intelligent Transportation
, Highways, Aerial Traffic Sensors, Sensor Deployment Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高交通感知网络的监测效率和高速公路突发事件下的应急救援效率,将无人机空中传感器作为道路交通流检测设备,通过合理布设规划空中传感器布设位置实时道路交通流监测状态。融合事故数据和流量数据,基于信息熵理论构建路段候选点重要度模型,进而量化高速公路路段的巡检优先级。在此基础上,以最大化覆盖重要路段为目标,以传感器布设原则和预算上限为约束,构建了空中传感器布设优化模型,并通过对比分析不同预算上限的空中传感器布设方案以及视频传感器布设方案,验证了模型的有效性。结果表明:相较于视频传感器布设方案,空中传感器布设能够有效降低传感器布设成本、提高监测范围的空间覆盖率。
To improve the monitoring efficiency of the traffic perception network and the emergency rescue efficiency under highway emergencies, the UAV aerial sensor was used as the road traffic flow detection equipment, and the real-time road traffic flow monitoring status was planned through a reasonable layout planning of the aerial sensors’ laying position. Accident and traffic data are fused, and the importance model of candidate points of road sections is constructed based on the information entropy theory. Then, the inspection priority of highway sections is quantified. On this basis, to maximize the coverage of important road sections, an aerial sensor deployment optimization model is constructed based on the constraint of sensor deployment principle and budget upper limit, and the effectiveness of the model is verified by comparing and analyzing the aerial sensor deployment scheme and video sensor deployment scheme with different budget upper limits. The results show that compared with the video sensor deployment scheme, the aerial sensor deployment can effectively reduce the sensor deployment cost and improve the spatial coverage of the monitoring range.

References

[1]  Owais, M., Moussa, G.S. and Hussain, K.F. (2019) Sensor Location Model for O/D Estimation: Multi-Criteria Meta-Heuristics Approach. Operations Research Perspectives, 6, Article ID: 100100.
https://doi.org/10.1016/j.orp.2019.100100
[2]  Fu, H., Lam, W.H.K., Shao, H., Kattan, L. and Salari, M. (2022) Optimization of Multi-Type Traffic Sensor Locations for Estimation of Multi-Period Origin-Destination Demands with Covariance Effects. Transportation Research Part E: Logistics and Transportation Review, 157, Article ID: 102555.
https://doi.org/10.1016/j.tre.2021.102555
[3]  王仲, 钟树伟, 徐洪峰. 考虑故障因素的高速公路交通检测器布设[J]. 公路交通科技, 2022, 39(11): 158-164.
[4]  Salari, M., Kattan, L., Lam, W.H.K., Lo, H.P. and Esfeh, M.A. (2019) Optimization of Traffic Sensor Location for Complete Link Flow Observability in Traffic Network Considering Sensor Failure. Transportation Research Part B: Methodological, 121, 216-251.
https://doi.org/10.1016/j.trb.2019.01.004
[5]  Chauhan, D., Unnikrishnan, A. and Figliozzi, M. (2019) Maximum Coverage Capacitated Facility Location Problem with Range Constrained Drones. Transportation Research Part C: Emerging Technologies, 99, 1-18.
https://doi.org/10.1016/j.trc.2018.12.001
[6]  Hong, I., Kuby, M. and Murray, A.T. (2018) A Range-Restricted Recharging Station Coverage Model for Drone Delivery Service Planning. Transportation Research Part C: Emerging Technologies, 90, 198-212.
https://doi.org/10.1016/j.trc.2018.02.017
[7]  陈刚, 付江月. 军民融合背景下无人机配送中心选址问题研究[J]. 计算机工程与应用, 2019, 55(8): 226-231, 237.
[8]  任新惠, 王柳. 即时配送下无人机全自动机场分区选址模型[J]. 计算机工程与应用, 2021, 57(10): 266-272.
[9]  李立, 平振东, 徐志刚, 等. 高速公路行车风险路侧感知系统的设备优化布设[J]. 浙江大学学报(工学版), 2023, 57(6): 1137-1146.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133