This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations that are technically difficult to realize and their cost is higher. The modelling and dimensioning of foundations on a ballasted column will be an important contribution to the state of the art of this method because it will highlight the mode of transfer of loads, and will expose the induced deformations by also allowing to verification criteria of bearing capacity and allowable settlement according to geometric information of the model. The columns on a substrate located at 9 m have a length of 9 m and a diameter of 40 cm and were obtained by incorporating ballast of granular class 0/31.5 of internal friction angle of 38? and a density weight of 21 kN/m3. The choice of this method is based on the geotechnical characteristics of the initial soil. Thus, identification and characterization tests were carried out to estimate the bearing capacity and the settlement giving respectively 125 kPa and 57 cm. These results show the ground does not have sufficient mechanical properties to withstand the loads transmitted by the tank. By adopting the reinforcement of the soil with ballasted columns, numerical calculations show that after applying a load equal to 265.1 KPa, 20 cm vertical settlement and 17 cm horizontal displacement were obtained. This is in the tolerable deformation range for our tank, namely, less than 20 cm. Analytically, in addition to reducing settlement, ballasted columns, Due to their high stiffness, they have effectively contributed to the increase of the permissible soil stress up to 257 kPa.
References
[1]
Kleine, A. (2007) Modélisation numérique du comportement des ouvrages souterrains par une approche viscoplastique.
[2]
Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. and Zadhoush, A. (2012) A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers. Construction and Building Materials, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045
[3]
Hubbert, B.P. (2009) Fondations et Ouvrages en Terre Géotechnique du BTP.
[4]
Helaili, M.L. (2020) Amélioration des sols par colonnes ballastées.
[5]
Mammeri, B. (2017) Les lois de comportement.
[6]
Jellali, B., Bouassida, M. and de Buhan, P. (2010) Stability Analysis of an Embankment Resting Upon a Column‐Reinforced Soil. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1243-1256. https://doi.org/10.1002/nag.954
[7]
Gens, A., Carol, I. and Alonso, E.E. (1989) An Interface Element Formulation for the Analysis of Soil-Reinforcement Interaction. Computers and Geotechnics, 7, 133-151. https://doi.org/10.1016/0266-352x(89)90011-6
[8]
Michalowski, R.L. (1998) Soil Reinforcement for Seismic Design of Geotechnical Structures. Computers and Geotechnics, 23, 1-17. https://doi.org/10.1016/s0266-352x(98)00016-0
[9]
Aguado, P., Berthelot, P., Carpinteiro, L., Durand, F., Glandy, M., Liausu, P., et al. (2011) Recommandations sur la conception, Le calcul, L’exécution et le contrôle des colonnes ballastées sous bâtiments et sous ouvrages sensibles au tassement. Revue Française de Géotechnique, 136, 71-86. https://doi.org/10.1051/geotech/2011136071
[10]
Zahmatkesh, A. and Choobbasti, A.J. (2010) Settlement Evaluation of Soft Clay Reinforced with Stone Columns Using the Equivalent Secant Modulus. Arabian Journal of Geosciences, 5, 103-109. https://doi.org/10.1007/s12517-010-0145-y
[11]
Al Saoudi, N.K.S., Rahil, F. and Abbawi, Z. (2015) Soft Soil Improved by Stone Columns and/or Ballast Layer. Proceedings of the Institution of Civil Engineers—Ground Improvement, 168, 179-186. https://doi.org/10.1680/grim.12.00035
[12]
Bouziane, A., Jamin, F., El Mandour, A., El Omari, M., Bouassida, M. and El Youssoufi, M.S. (2020) Experimental Study on a Scaled Test Model of Soil Reinforced by Stone Columns. European Journal of Environmental and Civil Engineering, 26, 1561-1580. https://doi.org/10.1080/19648189.2020.1716852
[13]
Olivier, C. (1995) L’essai pressiométrique et la résistance au cisaillement des sols.
[14]
Arbaoui, H., Gourvès, R., Bressolette, P. and Bodé, L. (2006) Mesure de la déformabilité des sols in situ à l’aide d’un essai de chargement statique d’une pointe pénétrométrique. Canadian Geotechnical Journal, 43, 355-369. https://doi.org/10.1139/t06-013
[15]
Choobbasti, A.J., Zahmatkesh, A. and Noorzad, R. (2011) Performance of Stone Columns in Soft Clay: Numerical Evaluation. Geotechnical and Geological Engineering, 29, 675-684. https://doi.org/10.1007/s10706-011-9409-x
[16]
Henri, C. (1984) Pieux et Colonnes Ballastees-Pieux Sous Radier-Frottement Negatif.
[17]
Brinkgreve, R.B.J., et al. (2016) PLAXIS 2016. PLAXIS B.V., The Netherlands. 1-16.
[18]
Amouzou, G.Y. and Soulaïmani, A. (2021) Numerical Algorithms for Elastoplacity: Finite Elements Code Development and Implementation of the Mohr–Coulomb Law. Applied Sciences, 11, Article No. 4637. https://doi.org/10.3390/app11104637
[19]
Shahir, H. and Pak, A. (2010) Estimating Liquefaction-Induced Settlement of Shallow Foundations by Numerical Approach. Computers and Geotechnics, 37, 267-279. https://doi.org/10.1016/j.compgeo.2009.10.001