|
北京市通州区主要河流生态基流研究
|
Abstract:
针对北京市通州区缺乏生态基流的相关研究,本文以通州区主要河流为研究对象,基于MIKE11模型模拟2019年主要河流氨氮变化特征,并在5个国家级和市级考核监测断面采用水文学法和模型模拟分析城市河道生态基流。结果表明:北运河上游年均氨氮浓度为III类;凉水河、潮白河上段以及北运河中下游为IV类;凤港减河、港沟河及潮白河下段为V类。除王家摆、许各庄断面外,其余断面两种生态基流计算方法的结果较为接近。运潮减河入潮白河口生态基流推荐值为5.5 m3/s、北运河王家摆7.44 m3/s、凉水河许各庄8.83 m3/s、凤港减河小屯4.27 m3/s,港沟河后元化2.97 m3/s。各生态基流保障率均值为89%~100%,基本满足设计保障率要求。本研究对北京市通州区生态基流开展了尝试性的研究工作,为水环境管理提供技术支撑。
In view of the lack of ecological base flow in Tongzhou District of Beijing, the main rivers in Tongzhou District were taken as the research object, and the changes of ammonia nitrogen in the main rivers in 2019 were simulated based on the MIKE11 model, while the ecological base flow of urban river was analyzed by hydrologic method at 5 national and municipal examination and monitoring sections. The results show that the annual average ammonia nitrogen concentration in the upper reaches of the Beiyun River was class III; the Liangshui River, the upper part of the Chaobai River, and the middle and lower reaches of the Beiyun River were class IV; the Fenggangjian River, the Ganggou River, and the lower part of the Chaobai River were class V. The calculation results of the two methods are close to each other except Wangjiabai and Xugezhuang. The recommended values of ecological base flow are as follows: 5.5 m3/s at Yunchaojian River, 7.44 m3/s at Wangjiabai, 8.83 m3/s at Xugezhuang, 4.27 m3/s at Xiaotun and 2.97 m3/s at Houyuanhua. The average guarantee rate of ecological base flow is 89%~100%, which basically meets the requirement of design guarantee rate. The ecological base flow studied in Tongzhou District of Beijing will provide technical support for water environment management.
[1] | 柴朝晖, 姚仕明. 河流生态研究热点与进展[J]. 人民长江, 2021, 52(4): 68-74. https://doi.org/10.16232/j.cnki.1001-4179.2021.04.011 |
[2] | 徐宗学, 彭定志, 庞博, 等. 河道生态基流理论基础与计算方法——以渭河关中段为例[M]. 北京: 科学出版社, 2016. |
[3] | 张文睿, 孙栋元, 曹晓萱, 等. 大通河流域生态流量确定及预警方案研究[J]. 水资源与水工程学报, 2023, 34(1): 100-109. https://doi.org/10.11705/j.issn.1672-643X.2023.01.12 |
[4] | 徐宗学, 李鹏, 侯昕玥. 河道生态基流理论基础与计算方法研究[J]. 人民黄河, 2019, 41(10): 119-127. https://doi.org/10. 3969/j.issn.1000-1379.2019.10.021 |
[5] | 刘欢, 胡鹏, 王建华, 等. 中国河流分区分类生态基流占比阈值确定[J]. 南水北调与水利科技(中英文), 2022, 20(4): 748-756. https://doi.org/10.13476/j.cnki.nsbdqk.2022.0076 |
[6] | 徐宗学, 武玮, 于松延. 生态基流研究: 进展与挑战[J]. 水力发电学报, 2016, 35(4): 1-11. https://doi.org/10.11660/slfdxb.20160401 |
[7] | 黄康, 李怀恩, 成波, 等. 基于Tennant方法的河流生态基流应用现状及改进思路[J]. 水资源与水工程学报, 2019, 30(5): 103-110. https://doi.org/10.11705/j.issn.1672-643X.2019.05.16 |
[8] | 王鹏, 华祖林, 褚克坚, 等. 高度城镇化地区河网水系生态调控方案[J]. 水资源保护, 2022, 38(1): 205-212. https://doi.org/10.3880/j.issn.1004-6933.2022.01.027 |
[9] | HUANG, L., HAN, X., WANG, X., et al. Coupling with high-resolution remote sensing data to evaluate urban non-point source pollution in Tongzhou, China. Science of the Total Environment, 2022, 831: 154632. https://doi.org/10.1016/j.scitotenv.2022.154632 |
[10] | 李晓玉, 韩愫, 邵光艺, 等. 基于多元分析的北京市通州区主要河流水质时空变化[J]. 环境化学, 2022, 41(9): 2896-2907. https://doi.org/10.7524/j.issn.0254-6108.2022022302 |
[11] | JI, H. Y., PENG, D. Z., FAN, C. T., et al. Assessing effects of non-point source pollution emission control schemes on Beijing’s sub-center with a water environment model. Urban Climate, 2022, 43: 101148. https://doi.org/10.1016/j.uclim.2022.101148 |
[12] | 李志强, 王亚娟, 温子希, 等. 潮白河春季生态补水及地下水响应[J]. 南水北调与水利科技(中英文), 2022, 20(2): 375-384. https://doi.org/10.13476/j.cnki.nsbdqk.2022.0038 |
[13] | 林晨, 周正, 巩媚. 北运河(通州段)综合治理思路与经验[J]. 人民黄河, 2021, 43(S2): 253-254, 258. https://doi.org/10.3969/j.issn.1000-1379.2021.S2.106 |
[14] | 罗小林, 尹长文, 张国新, 等. 北京市水环境现状及流域综合治理措施[J]. 水资源保护, 2021, 37(5): 140-146. https://doi.org/10.3880/j.issn.1004-6933.2021.05.021 |
[15] | TENNANT, D. L. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1976, 1(4): 6-10. https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2 |
[16] | DONG, G. T., YANG, S. T., GAO, Y. F., et al. Spatial evaluation of phosphorus retention in riparian zones using remote sensing data. Environmental Earth Sciences, 2014, 72: 1643-1657. https://doi.org/10.1007/s12665-014-3069-0 |
[17] | BU, J., LI, C., WANG, X., et al. Assessment and prediction of the water ecological carrying capacity in Changzhou city, China. Journal of Cleaner Production, 2020, 277: 123988. https://doi.org/10.1016/j.jclepro.2020.123988 |
[18] | 王一艳, 杨涛, 王伟, 等. 渭河生态基流时空分异特征及保障率分析[J]. 水资源与水工程学报, 2020, 31(3): 66-75. https://doi.org/10.11705/j.issn.1672-643X.2020.03.10 |
[19] | 李凯轩, 李志威, 胡旭跃, 等. 洞庭湖区三口水系生态基流研究[J]. 长江科学院院报, 2021, 38(8): 19-24. https://doi.org/10.11988 /ckyyb.20200549 |
[20] | 周瑞静, 宋炜, 倪宝峰. 基于数值模拟的地表水体对地下水源地影响研究——以北京市通州区为例[J]. 城市地质, 2020, 15(4): 388-393. |