|
人体自体成分治疗糖尿病足创面的研究进展
|
Abstract:
糖尿病足是糖尿病最严重的慢性并发症之一,具有较高的致残率和致死率,其发病机制十分复杂,与外周神经病变和下肢动脉缺血有关,也与外伤、感染、营养不良和肾功能不全等局部和全身情况有关。针对病因的去除或是改善是糖尿病足创面治疗的关键部分,但是采取方法促进糖尿病足创面的愈合以改善糖尿病患者的预后也是当前医学界关注的焦点。以自体植皮为代表的人体自体成分在创面治疗中发挥重要作用。近年来,人体自体成分在糖尿病足创面的应用及研究不断涌现,在促进糖尿病足创面愈合等方面取得了良好的疗效。
Diabetic foot is one of the most serious chronic complications of diabetes, with high disability and mortality rates. Its pathogenesis is very complex and is related to peripheral neuropathy and lower extremity arterial ischemia, as well as local and systemic conditions such as trauma, infection, malnutrition and renal insufficiency. Removing or improving the cause is the key part of diabetic foot wound treatment, but taking methods to promote the healing of diabetic foot wounds to improve the prognosis of diabetic patients is also the focus of current medical attention. Human autologous components represented by autologous skin grafts play an important role in wound treatment. In recent years, the application and research of human autologous components in diabetic foot wounds have continued to emerge, and have achieved good therapeutic effects in promoting the healing of diabetic foot wounds.
[1] | Zhang, P., Lu, J., Jing, Y., Tang, S., Zhu, D. and Bi, Y. (2016) Global Epidemiology of Diabetic Foot Ulceration: A Systematic Review and Meta-Analysis. Annals of Medicine, 49, 106-116. https://doi.org/10.1080/07853890.2016.1231932 |
[2] | Armstrong, D.G., Boulton, A.J.M. and Bus, S.A. (2017) Diabetic Foot Ulcers and Their Recurrence. New England Journal of Medicine, 376, 2367-2375. https://doi.org/10.1056/nejmra1615439 |
[3] | Alonso, J.E., Lee, J., Burgess, A.R. and Browner, B.D. (1996) The Management of Complex Orthopedic Injuries. Surgical Clinics of North America, 76, 879-903. https://doi.org/10.1016/s0039-6109(05)70486-2 |
[4] | Velnar, T., Bailey, T. and Smrkolj, V. (2009) The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. Journal of International Medical Research, 37, 1528-1542. https://doi.org/10.1177/147323000903700531 |
[5] | Yammine, K. and Assi, C. (2019) A Meta-Analysis of the Outcomes of Split-Thickness Skin Graft on Diabetic Leg and Foot Ulcers. The International Journal of Lower Extremity Wounds, 18, 23-30. https://doi.org/10.1177/1534734619832123 |
[6] | Yang, Q.Y., Xue, Y.M., Cao, Y., et al. (2012) Clinical Characteristics and Risk Factors of Diabetic Foot Ulcer. Chinese Journal of Diabetes, 20, 189-191. |
[7] | Puttirutvong, P. (2004) Meshed Skin Graft versus Split Thickness Skin Graft in Diabetic Ulcer Coverage. The Journal of the Medical Association of Thailand, 87, 66-72. |
[8] | Sanniec, K., Nguyen, T., van Asten, S., Fontaine, J.L. and Lavery, L.A. (2017) Split-thickness Skin Grafts to the Foot and Ankle of Diabetic Patients. Journal of the American Podiatric Medical Association, 107, 365-368. https://doi.org/10.7547/15-200 |
[9] | Shyamsundar, S., Mahmud, A.A. and Khalasi, V. (2021) The Gracilis Muscle Flap: A “Work Horse” Free Flap in Diabetic Foot Reconstruction. World Journal of Plastic Surgery, 10, 33-39. https://doi.org/10.52547/wjps.10.2.33 |
[10] | Robson, M.C. (1997) The Role of Growth Factors in the Healing of Chronic Wounds. Wound Repair and Regeneration, 5, 12-17. https://doi.org/10.1046/j.1524-475x.1997.50106.x |
[11] | 胡凤丹. 自体全血外敷治疗糖尿病足慢性创面的临床研究[D]: [硕士学位论文]. 长沙: 湖南师范大学2022. |
[12] | 胡凤丹, 江丛元, 黄靓, 等. 自体全血外敷治疗糖尿病足慢性创面的临床研究[J]. 中华糖尿病杂志, 2022, 14(7): 669-674. |
[13] | 蔡秋妮, 卢伟锋, 黄小进, 等. 自体全血外敷治疗糖尿病足创面的效果研究[J]. 护理管理杂志, 2015, 15(4): 271-272. |
[14] | De Pascale, M.R., Sommese, L., Casamassimi, A. and Napoli, C. (2015) Platelet Derivatives in Regenerative Medicine: An Update. Transfusion Medicine Reviews, 29, 52-61. https://doi.org/10.1016/j.tmrv.2014.11.001 |
[15] | Marx, R.E. (2001) Platelet-rich Plasma (PRP): What Is PRP and What Is Not PRP? Implant Dentistry, 10, 225-228. https://doi.org/10.1097/00008505-200110000-00002 |
[16] | Schär, M.O., Diaz-Romero, J., Kohl, S., Zumstein, M.A. and Nesic, D. (2015) Platelet-Rich Concentrates Differentially Release Growth Factors and Induce Cell Migration in Vitro. Clinical Orthopaedics & Related Research, 473, 1635-1643. https://doi.org/10.1007/s11999-015-4192-2 |
[17] | Harrison, S., Vavken, P., Kevy, S., Jacobson, M., Zurakowski, D. and Murray, M.M. (2011) Platelet Activation by Collagen Provides Sustained Release of Anabolic Cytokines. The American Journal of Sports Medicine, 39, 729-734. https://doi.org/10.1177/0363546511401576 |
[18] | Piccin, A., Di Pierro, A.M., Canzian, L., et al. (2017) Platelet Gel: A New Therapeutic Tool with Great Potential. Blood transfusion, 15, 333-340. |
[19] | Li, Y., Gao, Y., Gao, Y., Chen, D., Wang, C., Liu, G., et al. (2018) Autologous Platelet‐Rich Gel Treatment for Diabetic Chronic Cutaneous Ulcers: A Meta‐Analysis of Randomized Controlled Trials. Journal of Diabetes, 11, 359-369. https://doi.org/10.1111/1753-0407.12850 |
[20] | Moog, P., Kirchhoff, K., Bekeran, S., Bauer, A., von Isenburg, S., Dornseifer, U., et al. (2020) Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An in Vitro Analysis. Biomedicines, 8, Article 16. https://doi.org/10.3390/biomedicines8010016 |
[21] | Ruthenborg, R.J., Ban, J., Wazir, A., Takeda, N. and Kim, J. (2014) Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1. Molecules and Cells, 37, 637-643. https://doi.org/10.14348/molcells.2014.0150 |
[22] | Hadjipanayi, E., Moog, P., Bekeran, S., Kirchhoff, K., Berezhnoi, A., Aguirre, J., et al. (2019) In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)—Fibrin Hydrogels: Basis for an Injectable Biomimetic Tissue Regeneration Therapy. Journal of Functional Biomaterials, 10, Article 22. https://doi.org/10.3390/jfb10020022 |
[23] | Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., et al. (2002) Therapeutic Angiogenesis for Patients with Limb Ischaemia by Autologous Transplantation of Bone-Marrow Cells: A Pilot Study and a Randomised Controlled Trial. The Lancet, 360, 427-435. https://doi.org/10.1016/s0140-6736(02)09670-8 |
[24] | Lopes, L., Setia, O., Aurshina, A., Liu, S., Hu, H., Isaji, T., et al. (2018) Stem Cell Therapy for Diabetic Foot Ulcers: A Review of Preclinical and Clinical Research. Stem Cell Research & Therapy, 9, Article No. 188. https://doi.org/10.1186/s13287-018-0938-6 |
[25] | El Hage, R., Knippschild, U., Arnold, T. and Hinterseher, I. (2022) Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines, 10, Article 1507. https://doi.org/10.3390/biomedicines10071507 |
[26] | Lu, D., Chen, B., Liang, Z., Deng, W., Jiang, Y., Li, S., et al. (2011) Comparison of Bone Marrow Mesenchymal Stem Cells with Bone Marrow-Derived Mononuclear Cells for Treatment of Diabetic Critical Limb Ischemia and Foot Ulcer: A Double-Blind, Randomized, Controlled Trial. Diabetes Research and Clinical Practice, 92, 26-36. https://doi.org/10.1016/j.diabres.2010.12.010 |
[27] | Ozturk, A., Kucukardali, Y., Tangi, F., Erikci, A., Uzun, G., Bashekim, C., et al. (2012) Therapeutical Potential of Autologous Peripheral Blood Mononuclear Cell Transplantation in Patients with Type 2 Diabetic Critical Limb Ischemia. Journal of Diabetes and its Complications, 26, 29-33. https://doi.org/10.1016/j.jdiacomp.2011.11.007 |
[28] | Álvaro-Afonso, F.J., Sanz-Corbalán, I., Lázaro-Martínez, J.L., Kakagia, D. and Papanas, N. (2020) Adipose-Derived Mesenchymal Stem Cells in the Treatment of Diabetic Foot Ulcers: A Review of Preclinical and Clinical Studies. Angiology, 71, 853-863. https://doi.org/10.1177/0003319720939467 |
[29] | Gadelkarim, M., Abushouk, A.I., Ghanem, E., Hamaad, A.M., Saad, A.M. and Abdel-Daim, M.M. (2018) Adipose-derived Stem Cells: Effectiveness and Advances in Delivery in Diabetic Wound Healing. Biomedicine & Pharmacotherapy, 107, 625-633. https://doi.org/10.1016/j.biopha.2018.08.013 |
[30] | Cianfarani, F., Toietta, G., Di Rocco, G., Cesareo, E., Zambruno, G. and Odorisio, T. (2013) Diabetes Impairs Adipose Tissue-Derived Stem Cell Function and Efficiency in Promoting Wound Healing. Wound Repair and Regeneration, 21, 545-553. https://doi.org/10.1111/wrr.12051 |
[31] | Rennert, R.C., Sorkin, M., Januszyk, M., Duscher, D., Kosaraju, R., Chung, M.T., et al. (2014) Diabetes Impairs the Angiogenic Potential of Adipose-Derived Stem Cells by Selectively Depleting Cellular Subpopulations. Stem Cell Research & Therapy, 5, Article No. 79. https://doi.org/10.1186/scrt468 |