|
血清CCN5与房颤患者左房低电压面积的相关性研究
|
Abstract:
目的:探讨房颤患者血清CCN5水平是否可以预测左房低电压面积(LVZ)的大小。方法:选取2023年6月到2024年1月于烟台毓璜顶医院就诊的窦性心律患者(对照组) 79例以及首次接受心脏射频消融术的房颤患者(房颤组)114例。收集一般资料、生化、心电图、心脏超声等临床资料。按术中行基质电压标测所得的LVZ是否大于6%将患者分为A组(LVZ < 6%)和B组(LVZ ≥ 6%)。采用酶联免疫标记法检测患者血清CCN5的水平。采用t检验比较对照组/房颤组、A/B组CCN5表达水平。采用Pearson或Spearman相关性分析探索CCN5与各临床资料的相关性。通过Logistic回归分析确定影响低压区的危险因素,绘制受试者工作特征(ROC)曲线确定CCN5预测左房低电压的临界值。结果:房颤患者血清CCN5表达水平显著低于对照组(32.43 ± 6.15比25.46 ± 4.97,P < 0.001)。房颤患者CCN5与BNP水平、左房直径和左房低电压面积占比显著负相关(P < 0.05)。与A组相比,B组房颤患者CCN5表达水平更低(30.10 ± 6.75比24.75 ± 3.49,P < 0.001)。根据Logistic回归分析显示,血清CCN5水平降低确认为LVZ的独立危险因素。ROC曲线表明房颤患者血CCN5预测LVZ ≥ 6%的最佳血浓度为27.22 ng/ml,灵敏度为0.707,特异度为0.773,曲线下面积为0.785 [P < 0.001, CI: (0.696, 0.873)]。结论:血清CCN5可以独立预测房颤患者左房低电压面积占比。
Objective: To explore whether the serum CCN5 levels associated with atrial fibrosis can predict LVZ in patients with atrial fibrillation. Methods: In this study, 79 patients with sinus rhythm (control group) and 114 patients with atrial fibrillation (atrial fibrillation group) who received radiofrequency cardiac ablation for the first time in Yantai Yuhuangding Hospital between June 2023 and January 2024 were enrolled. General data, biochemistry, electrocardiogram, cardiac ultrasound and other clinical data were collected. Left atrial stroma voltage mapping was performed in patients with atrial fibrillation and LVZ area ratio was calculated. Patients were divided into group A (LVZ < 6%) and group B (LVZ ≥ 6%) according to whether LVZ was greater than 6%. The expression level of CCN5 in peripheral blood was measured by enzyme-linked immunosorbent assay. T test was used to compare the CCN5 expression level between the control group and the atrial fibrillation group. Pearson or Spearman correlation analysis was used to explore the correlation between CCN5 and clinical data. Binary Logistic regression analysis was used to determine the risk factors affecting the LVZ, and receiver operating characteristic (ROC) analysis was down to determine the cut-off value of CCN5 to predict LVZ. Results: The level of CCN5 in patients with atrial fibrillation was lower than in control group (32.43 ± 6.15 vs. 25.46 ± 4.97, P < 0.001). For atrial fibrillation patients with LVZ < 6%, blood CCN5 expression levels were lower in patients with LVZ ≥ 6% (30.10 ± 6.75 vs. 24.75 ± 3.49, P < 0.001). In patients with atrial fibrillation, CCN5 was negatively correlated with BNP level, left atrial diameter and left atrial low-voltage
[1] | Brundel, B.J.J.M., Ai, X., Hills, M.T., Kuipers, M.F., Lip, G.Y.H. and de Groot, N.M.S. (2022) Atrial Fibrillation. Nature Reviews Disease Primers, 8, Article No. 21. https://doi.org/10.1038/s41572-022-00347-9 |
[2] | Xintarakou, A., Tzeis, S., Psarras, S., Asvestas, D. and Vardas, P. (2020) Atrial Fibrosis as a Dominant Factor for the Development of Atrial Fibrillation: Facts and Gaps. EP Europace, 22, 342-351. https://doi.org/10.1093/europace/euaa009 |
[3] | Al-Kaisey, A.M., Parameswaran, R., Bryant, C., Anderson, R.D., Hawson, J., Chieng, D., et al. (2023) Atrial Fibrillation Catheter Ablation vs Medical Therapy and Psychological Distress. JAMA, 330, 925-933. https://doi.org/10.1001/jama.2023.14685 |
[4] | Liu, Z., Xia, Y., Guo, C., Li, X., Fang, P., Yin, X., et al. (2021) Low-Voltage Zones as the Atrial Fibrillation Substrates: Relationship with Initiation, Perpetuation, and Termination. Frontiers in Cardiovascular Medicine, 8, Article 705510. https://doi.org/10.3389/fcvm.2021.705510 |
[5] | Al-Kaisey, A.M., Parameswaran, R., Joseph, S.A., Kistler, P.M., Morton, J.B. and Kalman, J.M. (2021) Extensive Right Atrial Free Wall Low-Voltage Zone as the Substrate for Atrial Fibrillation: Successful Ablation by Scar Homogenization. EP Europace, 23, 59-64. https://pubmed.ncbi.nlm.nih.gov/33141888/ https://doi.org/10.1093/europace/euaa233 |
[6] | Junarta, J., Siddiqui, M.U., Riley, J.M., Dikdan, S.J., Patel, A. and Frisch, D.R. (2022) Low-Voltage Area Substrate Modification for Atrial Fibrillation Ablation: A Systematic Review and Meta-Analysis of Clinical Trials. EP Europace, 24, 1585-1598. https://doi.org/10.1093/europace/euac089 |
[7] | Craft, J., Li, Y., Bhatti, S. and Cao, J.J. (2021) How to Do Left Atrial Late Gadolinium Enhancement: A Review. La Radiologia Medica, 126, 1159-1169. https://doi.org/10.1007/s11547-021-01383-3 |
[8] | Russo, J.W. and Castellot, J.J. (2010) CCN5: Biology and Pathophysiology. Journal of Cell Communication and Signaling, 4, 119-130. https://doi.org/10.1007/s12079-010-0098-7 |
[9] | Yoon, P.O., Lee, M., Cha, H., Jeong, M.H., Kim, J., Jang, S.P., et al. (2010) The Opposing Effects of CCN2 and CCN5 on the Development of Cardiac Hypertrophy and Fibrosis. Journal of Molecular and Cellular Cardiology, 49, 294-303. https://doi.org/10.1016/j.yjmcc.2010.04.010 |
[10] | Lee, M., Raad, N., Song, M.H., Yoo, J., Lee, M., Jang, S.P., et al. (2020) The Matricellular Protein CCN5 Prevents Adverse Atrial Structural and Electrical Remodelling. Journal of Cellular and Molecular Medicine, 24, 11768-11778. https://doi.org/10.1111/jcmm.15789 |
[11] | Wu, Y., Qin, X., Gao, P., Liu, Y., Fang, Q., Deng, H., et al. (2022) Relationship between the Distribution of Left Atrial Low-Voltage Zones and Post-Ablation Atrial Arrhythmia Recurrence in Patients with Atrial Fibrillation. Hellenic Journal of Cardiology, 66, 19-25. https://doi.org/10.1016/j.hjc.2022.05.001 |
[12] | Ravelli, F., Masè, M., Cristoforetti, A., Avogaro, L., D’Amato, E., Tessarolo, F., et al. (2022) Quantitative Assessment of Transmural Fibrosis Profile in the Human Atrium: Evidence for a Three-Dimensional Arrhythmic Substrate by Slice-to-Slice Histology. EP Europace, 25, 739-747. https://doi.org/10.1093/europace/euac187 |
[13] | Sohns, C. and Marrouche, N.F. (2019) Atrial Fibrillation and Cardiac Fibrosis. European Heart Journal, 41, 1123-1131. https://doi.org/10.1093/eurheartj/ehz786 |
[14] | Dilaveris, P., Antoniou, C., Manolakou, P., Tsiamis, E., Gatzoulis, K. and Tousoulis, D. (2019) Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26, 780-802. https://doi.org/10.2174/0929867324666170918122502 |
[15] | Cunha, P.S., Laranjo, S., Heijman, J. and Oliveira, M.M. (2022) The Atrium in Atrial Fibrillation—A Clinical Review on How to Manage Atrial Fibrotic Substrates. Frontiers in Cardiovascular Medicine, 9, Article 879984. https://doi.org/10.3389/fcvm.2022.879984 |
[16] | Yamaguchi, T. (2024) Atrial Structural Remodeling and Atrial Fibrillation Substrate: A Histopathological Perspective. Journal of Cardiology, in Press. https://doi.org/10.1016/j.jjcc.2024.05.007 |
[17] | Odeh, A., Dungan, G.D., Hoppensteadt, D., Siddiqui, F., Kantarcioglu, B., Darki, A., et al. (2023) Interrelationship between Inflammatory Biomarkers and Collagen Remodeling Proteins in Atrial Fibrillation. Clinical and Applied Thrombosis/Hemostasis, 29. https://doi.org/10.1177/10760296231165055 |
[18] | Ureche, C., Nedelcu, A., Sascău, R.A., Stătescu, C., Kanbay, M. and Covic, A. (2020) Role of Collagen Turnover Biomarkers in the Noninvasive Assessment of Myocardial Fibrosis: An Update. Biomarkers in Medicine, 14, 1265-1275. https://doi.org/10.2217/bmm-2020-0298 |
[19] | Odeh, A., Dungan, G.D., Darki, A., Hoppensteadt, D., Siddiqui, F., Kantarcioglu, B., et al. (2022) Collagen Remodeling and Fatty Acid Regulation Biomarkers in Understanding the Molecular Pathogenesis of Atrial Fibrillation. Clinical and Applied Thrombosis/Hemostasis, 28. https://doi.org/10.1177/10760296221145181 |
[20] | Cheng, T., Chen, Y., Li, S., Lin, F., Lu, Y., Lee, T., et al. (2024) Interleukin-33/ST2 Axis Involvement in Atrial Remodeling and Arrhythmogenesis. Translational Research, 268, 1-12. https://doi.org/10.1016/j.trsl.2024.01.006 |
[21] | García-Seara, J., González Melchor, L., Rodríguez García, J., Gude, F., Martínez Sande, J.L., Rodríguez Mañero, M., et al. (2023) Role of Soluble ST2 Biomarker in Predicting Recurrence of Atrial Fibrillation after Electrical Cardioversion or Pulmonary Vein Isolation. International Journal of Molecular Sciences, 24, Article 14045. https://doi.org/10.3390/ijms241814045 |
[22] | Nezami, Z., Holm, H., Ohlsson, M., Molvin, J., Korduner, J., Bachus, E., et al. (2022) The Impact of Myocardial Fibrosis Biomarkers in a Heart Failure Population with Atrial Fibrillation—The HARVEST-Malmö Study. Frontiers in Cardiovascular Medicine, 9, Article 982871. https://doi.org/10.3389/fcvm.2022.982871 |
[23] | Zhang, G. and Wu, Y. (2019) Circulating Galectin-3 and Atrial Fibrillation Recurrence after Catheter Ablation: A Meta-Analysis. Cardiovascular Therapeutics, 2019, Article 4148129. https://doi.org/10.1155/2019/4148129 |
[24] | De Bortoli, A., Ole-Gunnar, A. and Torbjørn, H. (2022) Relationship between Ablation Index and Myocardial Biomarkers after Radiofrequency Catheter Ablation for Atrial Fibrillation. Indian Pacing and Electrophysiology Journal, 22, 61-67. https://pubmed.ncbi.nlm.nih.gov/34861368/ https://doi.org/10.1016/j.ipej.2021.11.008 |
[25] | Berg, D.D., Ruff, C.T., Jarolim, P., Giugliano, R.P., Nordio, F., Lanz, H.J., et al. (2019) Performance of the ABC Scores for Assessing the Risk of Stroke or Systemic Embolism and Bleeding in Patients with Atrial Fibrillation in ENGAGE AF-TIMI 48. Circulation, 139, 760-771. https://doi.org/10.1161/circulationaha.118.038312 |
[26] | Winters, J., Kawczynski, M.J., Gilbers, M.D., Isaacs, A., Zeemering, S., Maesen, B., et al. (2024) Increased Circulating BMP10 Levels Are Associated with Late Postoperative Atrial Fibrillation after Cardiac Surgery and Left Atrial Endomysial Fibrosis. EP Europace, 26, euae102.621. https://doi.org/10.1093/europace/euae102.621 |
[27] | Kim, S.K., Pak, H.-., Park, J.H., Ko, K.J., Lee, J.S., Choi, J.I., et al. (2009) Clinical and Serological Predictors for the Recurrence of Atrial Fibrillation after Electrical Cardioversion. EP Europace, 11, 1632-1638. https://doi.org/10.1093/europace/eup321 |
[28] | Ki, M., Shin, D., Park, J., Hong, K., Hong, I., Park, J., et al. (2010) Frequency of Vacuolating Cytotoxin a (VacA)-Positive Helicobacter pylori Seropositivity and TGF-β1 Decrease in Atrial Fibrillation. International Journal of Cardiology, 145, 345-346. https://doi.org/10.1016/j.ijcard.2009.12.009 |
[29] | Rosenberg, M.A., Maziarz, M., Tan, A.Y., Glazer, N.L., Zieman, S.J., Kizer, J.R., et al. (2014) Circulating Fibrosis Biomarkers and Risk of Atrial Fibrillation: The Cardiovascular Health Study (CHS). American Heart Journal, 167, 723-728.E2. https://doi.org/10.1016/j.ahj.2014.01.010 |
[30] | Song, M.H., Yoo, J., Oh, J.G., Kook, H., Park, W.J. and Jeong, D. (2022) Matricellular Protein CCN5 Gene Transfer Ameliorates Cardiac and Skeletal Dysfunction in mdx/utrn (±) Haploinsufficient Mice by Reducing Fibrosis and Upregulating Utrophin Expression. Frontiers in Cardiovascular Medicine, 9, Article 763544. https://doi.org/10.3389/fcvm.2022.763544 |
[31] | Longobardo, L., Todaro, M.C., Zito, C., Piccione, M.C., Di Bella, G., Oreto, L., et al. (2013) Role of Imaging in Assessment of Atrial Fibrosis in Patients with Atrial Fibrillation: State-of-the-Art Review. European Heart Journal-Cardiovascular Imaging, 15, 1-5. https://doi.org/10.1093/ehjci/jet116 |