Alzheimer’s disease (AD) is caused by synaptic failure and the excessive accumulation of misfolded proteins especially Aβ and tau, and associated with memory loss and cognitive impairment. Treatment of AD mainly consists of symptomatic therapy and disease-modifying therapy (DMT). Several monotherapies including small molecules or antibodies have been evaluated through multiple clinical trials, but a very few have been approved by the USFDA to intervene the disease’s pathogenesis. Past research has shown multifactorial nature of AD, therefore, multi-target drugs were proposed to target different pathways at the same time, however, currently no rationally designed multi-target directed ligand (MTDL) has been clinically approved. Different combinations and bispecific antibodies are also under development. Novel approaches like stem cell-based therapies, microRNAs, peptides, ADCs and vaccines cast a new hope for AD treatment, however, a number of questions remained to be answered prior to their safe and effective clinical translation. This review explores the small molecules, MTDL, and antibodies (monospecific and bispecific) for the treatment of AD. Finally, future perspectives (stem cell therapy, PROTAC approaches, microRNAs, ADC, peptides and vaccines) are also discussed with regard to their clinical applications and feasibility.
Haass, C. and Selkoe, D.J. (2007) Soluble Protein Oligomers in Neurodegeneration: Lessons from the Alzheimer’s Amyloid β-Peptide. Nature Reviews Molecular Cell Biology, 8, 101-112. https://doi.org/10.1038/nrm2101
[3]
Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D. and Crowther, R.A. (1989) Multiple Isoforms of Human Microtubule-Associated Protein Tau: Sequences and Localization in Neurofibrillary Tangles of Alzheimer’s Disease. Neuron, 3, 519-526. https://doi.org/10.1016/0896-6273(89)90210-9
[4]
What Happens to the Brain in Alzheimer’s Disease? https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/what-happens-brain-alzheimers-disease
[5]
Barage, S.H. and Sonawane, K.D. (2015) Amyloid Cascade Hypothesis: Pathogenesis and Therapeutic Strategies in Alzheimer’s Disease. Neuropeptides, 52, 1-18. https://doi.org/10.1016/j.npep.2015.06.008
[6]
Kocahan, S. and Doğan, Z. (2017) Mechanisms of Alzheimer’s Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-Methyl-D-Aspartate Receptors, Tau Protein and Other Risk Factors. Clinical Psychopharmacology and Neuroscience, 15, 1-8. https://doi.org/10.9758/cpn.2017.15.1.1
[7]
Ferreira-Vieira, H.T., Guimaraes, M.I., Silva, R.F. and Ribeiro, M.F. (2016) Alzheimer’s Disease: Targeting the Cholinergic System. Current Neuropharmacology, 14, 101-115. https://doi.org/10.2174/1570159x13666150716165726
[8]
Gong, C. and Iqbal, K. (2008) Hyperphosphorylation of Microtubule-Associated Protein Tau: A Promising Therapeutic Target for Alzheimer Disease. Current Medicinal Chemistry, 15, 2321-2328. https://doi.org/10.2174/092986708785909111
[9]
Bondi, M.W., Edmonds, E.C. and Salmon, D.P. (2017) Alzheimer’s Disease: Past, Present, and Future. Journal of the International Neuropsychological Society, 23, 818-831. https://doi.org/10.1017/s135561771700100x
[10]
McGirr, S., Venegas, C. and Swaminathan, A. (2020) Alzheimer’s Disease: A Brief Review. Journal of Experimental Neurology, 1, 89-98.
[11]
Alzheimer’s Association (2024): Approved Treatments for Alzheimer’s. https://alz.org/media/documents/alzheimers-dementia-fda-approved-treatments-for-alzheimers-ts.pdf
[12]
Patnaik, N. (2015) Cure for Alzheimer’s Disease. World Journal of Neuroscience, 5, 328-330. https://doi.org/10.4236/wjns.2015.55030
[13]
Cummings, J., Lee, G., Ritter, A. and Zhong, K. (2018) Alzheimer’s Disease Drug Development Pipeline: 2018. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 4, 195-214. https://doi.org/10.1016/j.trci.2018.03.009
[14]
Cummings, J., Zhou, Y., Lee, G., Zhong, K., Fonseca, J. and Cheng, F. (2024) Alzheimer’s Disease Drug Development Pipeline: 2024. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 10, e12465. https://doi.org/10.1002/trc2.12465
[15]
Liu, H., Yang, J., Wang, L., Xu, Y., Zhang, S., Lv, J., et al. (2017) Targeting β-Amyloid Plaques and Oligomers: Development of Near-Ir Fluorescence Imaging Probes. Future Medicinal Chemistry, 9, 179-198. https://doi.org/10.4155/fmc-2016-0185
[16]
Parsons, C.G. and Rammes, G. (2017) Preclinical to Phase II Amyloid Beta (aβ) Peptide Modulators under Investigation for Alzheimer’s Disease. Expert Opinion on Investigational Drugs, 26, 579-592. https://doi.org/10.1080/13543784.2017.1313832
[17]
Iraji, A., Khoshneviszadeh, M., Firuzi, O., Khoshneviszadeh, M. and Edraki, N. (2020) Novel Small Molecule Therapeutic Agents for Alzheimer Disease: Focusing on BACE1 and Multi-Target Directed Ligands. Bioorganic Chemistry, 97, Article ID: 103649. https://doi.org/10.1016/j.bioorg.2020.103649
[18]
Jeremic, D., Jiménez-Díaz, L. and Navarro-López, J.D. (2021) Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alzheimer’s Disease: A Systematic Review. Ageing Research Reviews, 72, Article ID: 101496. https://doi.org/10.1016/j.arr.2021.101496
[19]
Folch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., et al. (2018) Review of the Advances in Treatment for Alzheimer Disease: Strategies for Combating β-Amyloid Protein. Neurología (EnglishEdition), 33, 47-58. https://doi.org/10.1016/j.nrleng.2015.03.019
[20]
Llufriu-Dabén, G., Carrete, A., Chierto, E., Mailleux, J., Camand, E., Simon, A., et al. (2018) Targeting Demyelination via Α-Secretases Promoting sAPPα Release to Enhance Remyelination in Central Nervous System. Neurobiology of Disease, 109, 11-24. https://doi.org/10.1016/j.nbd.2017.09.008
[21]
Yen, H., Yen, H. and Chi, C. (2020) Is Psoriasis Associated with Dementia or Cognitive Impairment? A Critically Appraised Topic. British Journal of Dermatology, 184, 34-42. https://doi.org/10.1111/bjd.19025
[22]
Andrade, S., Ramalho, M.J., Loureiro, J.A. and Pereira, M.d.C. (2019) Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. International Journal of Molecular Sciences, 20, Article No. 2313. https://doi.org/10.3390/ijms20092313
[23]
Thompson, R.E., Tuchman, A.J. and Alkon, D.L. (2022) Bryostatin Placebo-Controlled Trials Indicate Cognitive Restoration above Baseline for Advanced Alzheimer’s Disease in the Absence of Memantine1. Journal of Alzheimer’s Disease, 86, 1221-1229. https://doi.org/10.3233/jad-215545
[24]
Taléns-Visconti, R., de Julián-Ortiz, J.V., Vila-Busó, O., Diez-Sales, O. and Nácher, A. (2023) Intranasal Drug Administration in Alzheimer-Type Dementia: Towards Clinical Applications. Pharmaceutics, 15, Article No. 1399. https://doi.org/10.3390/pharmaceutics15051399
[25]
Ray, B., Maloney, B., Sambamurti, K., Karnati, H.K., Nelson, P.T., Greig, N.H., et al. (2020) Rivastigmine Modifies the Α-Secretase Pathway and Potentially Early Alzheimer’s Disease. TranslationalPsychiatry, 10, Article No. 47. https://doi.org/10.1038/s41398-020-0709-x
[26]
McCarthy, J.V., Twomey, C. and Wujek, P. (2009) Presenilin-Dependent Regulated Intramembrane Proteolysis and γ-Secretase Activity. Cellular and Molecular Life Sciences, 66, 1534-1555. https://doi.org/10.1007/s00018-009-8435-9
[27]
Mekala, S., Nelson, G. and Li, Y. (2020) Recent Developments of Small Molecule γ-Secretase Modulators for Alzheimer’s Disease. RSC Medicinal Chemistry, 11, 1003-1022. https://doi.org/10.1039/d0md00196a
[28]
Luo, J.E. and Li, Y. (2022) Turning the Tide on Alzheimer’s Disease: Modulation of γ-Secretase. Cell & Bioscience, 12, Article No. 2. https://doi.org/10.1186/s13578-021-00738-7
[29]
Kounnas, M.Z., Lane‐Donovan, C., Nowakowski, D.W., Herz, J. and Comer, W.T. (2016) NGP 555, a γ‐Secretase Modulator, Lowers the Amyloid Biomarker, Aβ42, in Cerebrospinal Fluid While Preventing Alzheimer’s Disease Cognitive Decline in Rodents. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3, 65-73. https://doi.org/10.1016/j.trci.2016.09.003
[30]
Kounnas, M.Z., Durakoglugil, M.S., Herz, J. and Comer, W.T. (2019) NGP 555, a γ‐secretase Modulator, Shows a Beneficial Shift in the Ratio of Amyloid Biomarkers in Human Cerebrospinal Fluid at Safe Doses. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 458-467. https://doi.org/10.1016/j.trci.2019.06.006
[31]
May, P.C., Willis, B.A., Lowe, S.L., Dean, R.A., Monk, S.A., Cocke, P.J., et al. (2015) The Potent BACE1 Inhibitor LY2886721 Elicits Robust Central Aβ Pharmacodynamic Responses in Mice, Dogs, and Humans. The Journal of Neuroscience, 35, 1199-1210. https://doi.org/10.1523/jneurosci.4129-14.2015
[32]
Yao, W., Yang, H. and Yang, J. (2022) Small-Molecule Drugs Development for Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article ID: 1019412. https://doi.org/10.3389/fnagi.2022.1019412
[33]
Lo, A.C., Evans, C.D., Mancini, M., Wang, H., Shcherbinin, S., Lu, M., et al. (2021) Phase II (NAVIGATE-AD Study) Results of LY3202626 Effects on Patients with Mild Alzheimer’s Disease Dementia. Journal of Alzheimer’s Disease Reports, 5, 321-336. https://doi.org/10.3233/adr-210296
[34]
Hey, J.A., Yu, J.Y., Versavel, M., Abushakra, S., Kocis, P., Power, A., et al. (2017) Clinical Pharmacokinetics and Safety of ALZ-801, a Novel Prodrug of Tramiprosate in Development for the Treatment of Alzheimer’s Disease. Clinical Pharmacokinetics, 57, 315-333. https://doi.org/10.1007/s40262-017-0608-3
[35]
Tolar, M., Hey, J., Power, A. and Abushakra, S. (2021) Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer’s Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. International Journal of Molecular Sciences, 22, 6355. https://doi.org/10.3390/ijms22126355
[36]
Tolar, M., Abushakra, S., Hey, J.A., Porsteinsson, A. and Sabbagh, M. (2020) Aducanumab, Gantenerumab, BAN2401, and Alz-801—The First Wave of Amyloid-Targeting Drugs for Alzheimer’s Disease with Potential for near Term Approval. Alzheimer’s Research & Therapy, 12, Article No. 95. https://doi.org/10.1186/s13195-020-00663-w
[37]
Anavex Life Sciences Corp. New York September 14, 2023. https://www.anavex.com
[38]
Chen, X., Barrero, C.A., Vasquez-Del Carpio, R., Reddy, E.P., Fecchio, C., Merali, S., et al. (2021) Posiphen Reduces the Levels of Huntingtin Protein through Translation Suppression. Pharmaceutics, 13, Article No. 2109. https://doi.org/10.3390/pharmaceutics13122109
[39]
Fang, C., Hernandez, P., Liow, K., Damiano, E., Zetterberg, H., Blennow, K., et al. (2022) Buntanetap, a Novel Translational Inhibitor of Multiple Neurotoxic Proteins, Proves to Be Safe and Promising in Both Alzheimer’s and Parkinson’s Patients. The Journal of Prevention of Alzheimer’s Disease, 10, 25-33. https://doi.org/10.14283/jpad.2022.84
[40]
Liu, Y., Giunta, B., Zhou, H., Tan, J. and Wang, Y. (2012) Immunotherapy for Alzheimer Disease—The Challenge of Adverse Effects. Nature Reviews Neurology, 8, 465-469. https://doi.org/10.1038/nrneurol.2012.118
[41]
Arndt, J.W., Qian, F., Smith, B.A., Quan, C., Kilambi, K.P., Bush, M.W., et al. (2018) Structural and Kinetic Basis for the Selectivity of Aducanumab for Aggregated Forms of Amyloid-β. Scientific Reports, 8, Article No. 6412. https://doi.org/10.1038/s41598-018-24501-0
[42]
Sevigny, J., Chiao, P., Bussière, T., Weinreb, P.H., Williams, L., Maier, M., et al. (2016) The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature, 537, 50-56. https://doi.org/10.1038/nature19323
[43]
Linse, S., Scheidt, T., Bernfur, K., Vendruscolo, M., Dobson, C.M., Cohen, S.I.A., et al. (2020) Kinetic Fingerprints Differentiate the Mechanisms of Action of Anti-Aβ Antibodies. Nature Structural & Molecular Biology, 27, 1125-1133. https://doi.org/10.1038/s41594-020-0505-6
Budd, H.S., Aisen, P.S., Barkhof, F., etal. (2022) Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. The Journal of Prevention of Alzheimer’s Disease, 9, 197-210.
[46]
Dhillon, S. (2021) Aducanumab: First Approval. Drugs, 81, 1437-1443. https://doi.org/10.1007/s40265-021-01569-z
[47]
Mintun, M.A., Lo, A.C., Duggan Evans, C., Wessels, A.M., Ardayfio, P.A., Andersen, S.W., et al. (2021) Donanemab in Early Alzheimer’s Disease. New England Journal of Medicine, 384, 1691-1704. https://doi.org/10.1056/nejmoa2100708
[48]
Logovinsky, V., Satlin, A., Lai, R., Swanson, C., Kaplow, J., Osswald, G., et al. (2016) Safety and Tolerability of BAN2401—A Clinical Study in Alzheimer’s Disease with a Protofibril Selective Aβ Antibody. Alzheimer’s Research & Therapy, 8, Article No. 14. https://doi.org/10.1186/s13195-016-0181-2
[49]
Swanson, C.J., Zhang, Y., Dhadda, S., Wang, J., Kaplow, J., Lai, R.Y.K., et al. (2022) Correction: A Randomized, Double-Blind, Phase 2b Proof-of-Concept Clinical Trial in Early Alzheimer’s Disease with Lecanemab, an Anti-Aβ Protofibril Antibody. Alzheimer’s Research & Therapy, 14, Article No. 70. https://doi.org/10.1186/s13195-022-00995-9
[50]
Honig, L.S., Vellas, B., Woodward, M., Boada, M., Bullock, R., Borrie, M., et al. (2018) Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. New England Journal of Medicine, 378, 321-330. https://doi.org/10.1056/nejmoa1705971
[51]
Doody, R.S., Thomas, R.G., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., et al. (2014) Phase 3 Trials of Solanezumab for Mild-to-Moderate Alzheimer’s Disease. New England Journal of Medicine, 370, 311-321. https://doi.org/10.1056/nejmoa1312889
[52]
Adolfsson, O., Pihlgren, M., Toni, N., Varisco, Y., Buccarello, A.L., Antoniello, K., et al. (2012) An Effector-Reduced Anti-Amyloid (A) Antibody with Unique a Binding Properties Promotes Neuroprotection and Glial Engulfment of A. Journal of Neuroscience, 32, 9677-9689. https://doi.org/10.1523/jneurosci.4742-11.2012
[53]
Ostrowitzki, S., Bittner, T., Sink, K.M., Mackey, H., Rabe, C., Honig, L.S., et al. (2022) Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults with Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurology, 79, 1113-1121. https://doi.org/10.1001/jamaneurol.2022.2909
[54]
Bohrmann, B., Baumann, K., Benz, J., Gerber, F., Huber, W., Knoflach, F., et al. (2012) Gantenerumab: A Novel Human Anti-Aβ Antibody Demonstrates Sustained Cerebral Amyloid-β Binding and Elicits Cell-Mediated Removal of Human Amyloid-β. Journal of Alzheimer’s Disease, 28, 49-69. https://doi.org/10.3233/jad-2011-110977
[55]
Klein, G., Delmar, P., Voyle, N., Rehal, S., Hofmann, C., Abi-Saab, D., et al. (2019) Gantenerumab Reduces Amyloid-β Plaques in Patients with Prodromal to Moderate Alzheimer’s Disease: A PET Substudy Interim Analysis. Alzheimer’s Research & Therapy, 11, Article No. 101. https://doi.org/10.1186/s13195-019-0559-z
[56]
van Dyck, C.H. (2018) Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. BiologicalPsychiatry, 83, 311-319. https://doi.org/10.1016/j.biopsych.2017.08.010
[57]
Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., et al. (2014) Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. New England Journal of Medicine, 370, 322-333. https://doi.org/10.1056/nejmoa1304839
[58]
Ayalon, G., Lee, S., Adolfsson, O., Foo-Atkins, C., Atwal, J.K., Blendstrup, M., et al. (2021) Antibody Semorinemab Reduces Tau Pathology in a Transgenic Mouse Model and Engages Tau in Patients with Alzheimer’s Disease. ScienceTranslationalMedicine, 13, eabb2639. https://doi.org/10.1126/scitranslmed.abb2639
[59]
Teng, E., Manser, P.T., Pickthorn, K., Brunstein, F., Blendstrup, M., Sanabria Bohorquez, S., et al. (2022) Safety and Efficacy of Semorinemab in Individuals with Prodromal to Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurology, 79, Article No. 758. https://doi.org/10.1001/jamaneurol.2022.1375
[60]
Kim, B., Mikytuck, B., Suh, E., Gibbons, G.S., Van Deerlin, V.M., Vaishnavi, S.N., et al. (2021) Tau Immunotherapy Is Associated with Glial Responses in FTLD-TAU. Acta Neuropathologica, 142, 243-257. https://doi.org/10.1007/s00401-021-02318-y
[61]
Höglinger, G.U., Litvan, I., Mendonca, N., Wang, D., Zheng, H., Rendenbach-Mueller, B., et al. (2021) Safety and Efficacy of Tilavonemab in Progressive Supranuclear Palsy: A Phase 2, Randomised, Placebo-Controlled Trial. The Lancet Neurology, 20, 182-192. https://doi.org/10.1016/s1474-4422(20)30489-0
[62]
Albert, M., Mairet-Coello, G., Danis, C., Lieger, S., Caillierez, R., Carrier, S., et al. (2019) Prevention of Tau Seeding and Propagation by Immunotherapy with a Central Tau Epitope Antibody. Brain, 142, 1736-1750. https://doi.org/10.1093/brain/awz100
[63]
Ji, C. and Sigurdsson, E.M. (2021) Current Status of Clinical Trials on Tau Immunotherapies. Drugs, 81, 1135-1152. https://doi.org/10.1007/s40265-021-01546-6
[64]
Bijttebier, S., Theunis, C., Jahouh, F., Martins, D.R., Verhemeldonck, M., Grauwen, K., et al. (2021) Development of Immunoprecipitation—Two-Dimensional Liquid Chromatography—Mass Spectrometry Methodology as Biomarker Read-Out to Quantify Phosphorylated Tau in Cerebrospinal Fluid from Alzheimer Disease Patients. Journal of Chromatography A, 1651, Article ID: 462299. https://doi.org/10.1016/j.chroma.2021.462299
[65]
Roberts, M., Sevastou, I., Imaizumi, Y., Mistry, K., Talma, S., Dey, M., et al. (2020) Pre-Clinical Characterisation of E2814, a High-Affinity Antibody Targeting the Microtubule-Binding Repeat Domain of Tau for Passive Immunotherapy in Alzheimer’s Disease. Acta Neuropathologica Communications, 8, Article No. 13. https://doi.org/10.1186/s40478-020-0884-2
[66]
Sandusky-Beltran, L.A. and Sigurdsson, E.M. (2020) Tau Immunotherapies: Lessons Learned, Current Status and Future Considerations. Neuropharmacology, 175, Article ID: 108104. https://doi.org/10.1016/j.neuropharm.2020.108104
[67]
Kabir, M.T., Uddin, M.S., Mamun, A.A., Jeandet, P., Aleya, L., Mansouri, R.A., et al. (2020) Combination Drug Therapy for the Management of Alzheimer’s Disease. International Journal of Molecular Sciences, 21, Article No. 3272. https://doi.org/10.3390/ijms21093272
[68]
Morawski, M., Schilling, S., Kreuzberger, M., Waniek, A., Jäger, C., Koch, B., et al. (2014) Glutaminyl Cyclase in Human Cortex: Correlation with (PGLU)-Amyloid-β Load and Cognitive Decline in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 39, 385-400. https://doi.org/10.3233/jad-131535
[69]
Wirths, O., Breyhan, H., Cynis, H., Schilling, S., Demuth, H. and Bayer, T.A. (2009) Intraneuronal Pyroglutamate-Abeta 3-42 Triggers Neurodegeneration and Lethal Neurological Deficits in a Transgenic Mouse Model. Acta Neuropathologica, 118, 487-496. https://doi.org/10.1007/s00401-009-0557-5
[70]
Schlenzig, D., Cynis, H., Hartlage-Rübsamen, M., Zeitschel, U., Menge, K., Fothe, A., et al. (2018) Dipeptidyl-Peptidase Activity of Meprin β Links N-Truncation of Aβ with Glutaminyl Cyclase-Catalyzed Pglu-Aβ Formation. Journal of Alzheimer’s Disease, 66, 359-375. https://doi.org/10.3233/jad-171183
[71]
Hoffmann, T., Meyer, A., Heiser, U., Kurat, S., Böhme, L., Kleinschmidt, M., et al. (2017) Glutaminyl Cyclase Inhibitor PQ912 Improves Cognition in Mouse Models of Alzheimer’s Disease—Studies on Relation to Effective Target Occupancy. Journal of Pharmacology and Experimental Therapeutics, 362, 119-130. https://doi.org/10.1124/jpet.117.240614
[72]
Lues, I., Weber, F., Meyer, A., Bühring, U., Hoffmann, T., Kühn‐Wache, K., et al. (2015) A Phase 1 Study to Evaluate the Safety and Pharmacokinetics of PQ912, a Glutaminyl Cyclase Inhibitor, in Healthy Subjects. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 1, 182-195. https://doi.org/10.1016/j.trci.2015.08.002
[73]
Scheltens, P., Hallikainen, M., Grimmer, T., Duning, T., Gouw, A.A., Teunissen, C.E., et al. (2018) Safety, Tolerability and Efficacy of the Glutaminyl Cyclase Inhibitor PQ912 in Alzheimer’s Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase 2a Study. Alzheimer’s Research & Therapy, 10, Article No. 107. https://doi.org/10.1186/s13195-018-0431-6
[74]
Hoffmann, T., Rahfeld, J., Schenk, M., Ponath, F., Makioka, K., Hutter-Paier, B., et al. (2021) Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice. International Journal of Molecular Sciences, 22, Article No. 11791. https://doi.org/10.3390/ijms222111791
[75]
Leinenga, G. and Götz, J. (2015) Scanning Ultrasound Removes Amyloid-β and Restores Memory in an Alzheimer’s Disease Mouse Model. Science Translational Medicine, 7, 278ra33. https://doi.org/10.1126/scitranslmed.aaa2512
[76]
Leinenga, G. and Götz, J. (2018) Safety and Efficacy of Scanning Ultrasound Treatment of Aged APP23 Mice. Frontiers in Neuroscience, 12, Article No. 55. https://doi.org/10.3389/fnins.2018.00055
[77]
Leinenga, G., Koh, W.K. and Götz, J. (2021) A Comparative Study of the Effects of Aducanumab and Scanning Ultrasound on Amyloid Plaques and Behavior in the APP23 Mouse Model of Alzheimer Disease. Alzheimer’s Research & Therapy, 13, Article No. 76. https://doi.org/10.1186/s13195-021-00809-4
[78]
Tolar, M., Abushakra, S., Hey, J.A., Porsteinsson, A. and Sabbagh, M. (2020) Aducanumab, Gantenerumab, BAN2401, and Alz-801—The First Wave of Amyloid-Targeting Drugs for Alzheimer’s Disease with Potential for near Term Approval. Alzheimer’s Research & Therapy, 12, Article No. 95. https://doi.org/10.1186/s13195-020-00663-w
[79]
Sehlin, D., Stocki, P., Gustavsson, T., Hultqvist, G., Walsh, F.S., Rutkowski, J.L., et al. (2020) Brain Delivery of Biologics Using a Cross‐Species Reactive Transferrin Receptor 1 VNAR Shuttle. The FASEB Journal, 34, 13272-13283. https://doi.org/10.1096/fj.202000610rr
[80]
Roshanbin, S., Xiong, M., Hultqvist, G., Söderberg, L., Zachrisson, O., Meier, S., et al. (2022) In Vivo Imaging of Alpha-Synuclein with Antibody-Based Pet. Neuropharmacology, 208, Article ID: 108985. https://doi.org/10.1016/j.neuropharm.2022.108985
[81]
Magnusson, K., Sehlin, D., Syvänen, S., Svedberg, M.M., Philipson, O., Söderberg, L., et al. (2013) Specific Uptake of an Amyloid-β Protofibril-Binding Antibody-Tracer in Aβpp Transgenic Mouse Brain. Journal of Alzheimer’s Disease, 37, 29-40. https://doi.org/10.3233/jad-130029
[82]
Yu, Y.J., Zhang, Y., Kenrick, M., Hoyte, K., Luk, W., Lu, Y., et al. (2011) Boosting Brain Uptake of a Therapeutic Antibody by Reducing Its Affinity for a Transcytosis Target. Science Translational Medicine, 3, 84ra44. https://doi.org/10.1126/scitranslmed.3002230
[83]
Hultqvist, G., Syvänen, S., Fang, X.T., Lannfelt, L. and Sehlin, D. (2017) Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics, 7, 308-318. https://doi.org/10.7150/thno.17155
[84]
Kariolis, M.S., Wells, R.C., Getz, J.A., Kwan, W., Mahon, C.S., Tong, R., et al. (2020) Brain Delivery of Therapeutic Proteins Using an Fc Fragment Blood-Brain Barrier Transport Vehicle in Mice and Monkeys. Science Translational Medicine, 12, eaay1359. https://doi.org/10.1126/scitranslmed.aay1359
[85]
Sehlin, D., Fang, X.T., Cato, L., Antoni, G., Lannfelt, L. and Syvänen, S. (2016) Antibody-Based PET Imaging of Amyloid Beta in Mouse Models of Alzheimer’s Disease. Nature Communications, 7, Article No. 10759. https://doi.org/10.1038/ncomms10759
[86]
Niewoehner, J., Bohrmann, B., Collin, L., Urich, E., Sade, H., Maier, P., et al. (2014) Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle. Neuron, 81, 49-60. https://doi.org/10.1016/j.neuron.2013.10.061
[87]
McConlogue, L., Buttini, M., Anderson, J.P., Brigham, E.F., Chen, K.S., Freedman, S.B., et al. (2007) Partial Reduction of BACE1 Has Dramatic Effects on Alzheimer Plaque and Synaptic Pathology in APP Transgenic Mice. Journal of Biological Chemistry, 282, 26326-26334. https://doi.org/10.1074/jbc.m611687200
[88]
Yanamandra, K., Jiang, H., Mahan, T.E., Maloney, S.E., Wozniak, D.F., Diamond, M.I., et al. (2015) Anti‐Tau Antibody Reduces Insoluble Tau and Decreases Brain Atrophy. Annals of Clinical and Translational Neurology, 2, 278-288. https://doi.org/10.1002/acn3.176
[89]
Rofo, F., Meier, S.R., Metzendorf, N.G., Morrison, J.I., Petrovic, A., Syvänen, S., et al. (2022) A Brain-Targeting Bispecific-Multivalent Antibody Clears Soluble Amyloid-Beta Aggregates in Alzheimer’s Disease Mice. Neurotherapeutics, 19, 1588-1602. https://doi.org/10.1007/s13311-022-01283-y
[90]
Ahmad, F. and Sachdeva, P. (2022) A Consolidated Review on Stem Cell Therapy for Treatment and Management of Alzheimer’s Disease. Aging Medicine, 5, 182-190. https://doi.org/10.1002/agm2.12216
[91]
Park, D., Yang, Y., Bae, D.K., Lee, S.H., Yang, G., Kyung, J., et al. (2013) Improvement of Cognitive Function and Physical Activity of Aging Mice by Human Neural Stem Cells Over-Expressing Choline Acetyltransferase. NeurobiologyofAging, 34, 2639-2646. https://doi.org/10.1016/j.neurobiolaging.2013.04.026
[92]
Kwak, K., Lee, S., Yang, J. and Park, Y. (2018) Current Perspectives Regarding Stem Cell-Based Therapy for Alzheimer’s Disease. Stem Cells International, 2018, Article ID: 6392986. https://doi.org/10.1155/2018/6392986
[93]
Duncan, T. and Valenzuela, M. (2017) Alzheimer’s Disease, Dementia, and Stem Cell Therapy. Stem Cell Research & Therapy, 8, Article No. 111. https://doi.org/10.1186/s13287-017-0567-5
[94]
Marsh, S.E. and Blurton-Jones, M. (2017) Neural Stem Cell Therapy for Neurodegenerative Disorders: The Role of Neurotrophic Support. Neurochemistry International, 106, 94-100. https://doi.org/10.1016/j.neuint.2017.02.006
[95]
Vasic, V., Barth, K. and Schmidt, M.H.H. (2019) Neurodegeneration and Neuro-Regeneration—Alzheimer’s Disease and Stem Cell Therapy. International Journal of Molecular Sciences, 20, Article No. 4272. https://doi.org/10.3390/ijms20174272
[96]
Li, M., Guo, K. and Ikehara, S. (2014) Stem Cell Treatment for Alzheimer’s Disease. International Journal of Molecular Sciences, 15, 19226-19238. https://doi.org/10.3390/ijms151019226
[97]
Fleifel, D., Rahmoon, M.A., AlOkda, A., Nasr, M., Elserafy, M. and El-Khamisy, S.F. (2018) Recent Advances in Stem Cells Therapy: A Focus on Cancer, Parkinson’s and Alzheimer’s. Journal of Genetic Engineering and Biotechnology, 16, 427-432. https://doi.org/10.1016/j.jgeb.2018.09.002
[98]
Cha, D.J., Mengel, D., Mustapic, M., Liu, W., Selkoe, D.J., Kapogiannis, D., et al. (2019) Mir-212 and Mir-132 Are Downregulated in Neurally Derived Plasma Exosomes of Alzheimer’s Patients. Frontiers in Neuroscience, 13, Article No. 1208. https://doi.org/10.3389/fnins.2019.01208
[99]
Kumar, S., Reddy, A.P., Yin, X. and Reddy, P.H. (2019) Novel Microrna-455-3p and Its Protective Effects against Abnormal APP Processing and Amyloid Beta Toxicity in Alzheimer’s Disease. BiochimicaetBiophysicaActa (BBA)—MolecularBasisofDisease, 1865, 2428-2440. https://doi.org/10.1016/j.bbadis.2019.06.006
[100]
Chopra, N., Wang, R., Maloney, B., Nho, K., Beck, J.S., Pourshafie, N., et al. (2020) Microrna-298 Reduces Levels of Human Amyloid-β Precursor Protein (APP), β-Site App-Converting Enzyme 1 (BACE1) and Specific Tau Protein Moieties. Molecular Psychiatry, 26, 5636-5657. https://doi.org/10.1038/s41380-019-0610-2
[101]
Gong, G., An, F., Wang, Y., Bian, M., Yu, L. and Wei, C. (2017) miR-15b Represses BACE1 Expression in Sporadic Alzheimer’s Disease. Oncotarget, 8, 91551-91557. https://doi.org/10.18632/oncotarget.21177
[102]
Zhang, P., Park, H., Zhang, J., Junn, E., Andrews, R.J., Velagapudi, S.P., et al. (2020) Translation of the Intrinsically Disordered Protein Α-Synuclein Is Inhibited by a Small Molecule Targeting Its Structured mRNA. Proceedings of the National Academy of Sciences, 117, 1457-1467. https://doi.org/10.1073/pnas.1905057117
[103]
Gabr, M.T. and Barbault, F. (2020) First Dual Binder of microRNA-146a and Monomeric Tau: A Novel Approach for Multitargeted Therapeutics for Neurodegenerative Diseases. Chemical Communications, 56, 9695-9698. https://doi.org/10.1039/d0cc04249h
[104]
Gu, S., Cui, D., Chen, X., Xiong, X. and Zhao, Y. (2018) PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery. BioEssays, 40, Article ID: 1700247. https://doi.org/10.1002/bies.201700247
[105]
Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M. and Deshaies, R.J. (2001) Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-f Box Complex for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences, 98, 8554-8559. https://doi.org/10.1073/pnas.141230798
[106]
Yang, J., Li, Y., Aguilar, A., Liu, Z., Yang, C. and Wang, S. (2019) Simple Structural Modifications Converting a Bona Fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. Journal of Medicinal Chemistry, 62, 9471-9487. https://doi.org/10.1021/acs.jmedchem.9b00846
[107]
Chu, T., Gao, N., Li, Q., Chen, P., Yang, X., Chen, Y., et al. (2016) Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. Cell Chemical Biology, 23, 453-461. https://doi.org/10.1016/j.chembiol.2016.02.016
[108]
Lu, M., Liu, T., Jiao, Q., Ji, J., Tao, M., Liu, Y., et al. (2018) Discovery of a Keap1-Dependent Peptide PROTAC to Knockdown Tau by Ubiquitination-Proteasome Degradation Pathway. European Journal of Medicinal Chemistry, 146, 251-259. https://doi.org/10.1016/j.ejmech.2018.01.063
[109]
Silva, M.C., Ferguson, F.M. and Cai, Q. (2019) Targeted Degradation of Aberrant Tau in Frontotemporal Dementia Patient-Derived Neuronal Cell Models. eLife, 8, e45457.
[110]
Wang, W., Zhou, Q., Jiang, T., Li, S., Ye, J., Zheng, J., et al. (2021) A Novel Small-Molecule PROTAC Selectively Promotes Tau Clearance to Improve Cognitive Functions in Alzheimer-Like Models. Theranostics, 11, 5279-5295. https://doi.org/10.7150/thno.55680
[111]
Liang, M., Gu, L., Zhang, H., Min, J., Wang, Z., Ma, Z., et al. (2022) Design, Synthesis, and Bioactivity of Novel Bifunctional Small Molecules for Alzheimer’s Disease. ACS Omega, 7, 26308-26315. https://doi.org/10.1021/acsomega.2c02130
[112]
Kargbo, R.B. (2020) PROTAC Compounds Targeting Α-Synuclein Protein for Treating Neurogenerative Disorders: Alzheimer’s and Parkinson’s Diseases. ACS Medicinal Chemistry Letters, 11, 1086-1087. https://doi.org/10.1021/acsmedchemlett.0c00192
[113]
Punyakoti, P., Behl, T., Sehgal, A., Yadav, S., Sachdeva, M., Anwer, M.K., et al. (2023) Postulating the Possible Cellular Signalling Mechanisms of Antibody Drug Conjugates in Alzheimer’s Disease. Cellular Signalling, 102, Article ID: 110539. https://doi.org/10.1016/j.cellsig.2022.110539
[114]
Catania, M., Colombo, L., Sorrentino, S., Cagnotto, A., Lucchetti, J., Barbagallo, M.C., et al. (2022) A Novel Bio-Inspired Strategy to Prevent Amyloidogenesis and Synaptic Damage in Alzheimer’s Disease. Molecular Psychiatry, 27, 5227-5234. https://doi.org/10.1038/s41380-022-01745-x
[115]
Fettelschoss, A., Zabel, F. and Bachmann, M.F. (2014) Vaccination against Alzheimer Disease: An Update on Future Strategies. Human Vaccines & Immunotherapeutics, 10, 847-851. https://doi.org/10.4161/hv.28183
[116]
Röskam, S., Neff, F., Schwarting, R., Bacher, M. and Dodel, R. (2010) APP Transgenic Mice: The Effect of Active and Passive Immunotherapy in Cognitive Tasks. Neuroscience & Biobehavioral Reviews, 34, 487-499. https://doi.org/10.1016/j.neubiorev.2009.10.006
[117]
Cacabelos, R. (2019) How Plausible Is an Alzheimer’s Disease Vaccine? Expert Opinion on Drug Discovery, 15, 1-6. https://doi.org/10.1080/17460441.2019.1667329
[118]
Petrushina, I., Hovakimyan, A., Harahap-Carrillo, I.S., Davtyan, H., Antonyan, T., Chailyan, G., et al. (2020) Characterization and Preclinical Evaluation of the cGMP Grade DNA Based Vaccine, AV-1959D to Enter the First-in-Human Clinical Trials. Neurobiology of Disease, 139, Article ID: 104823. https://doi.org/10.1016/j.nbd.2020.104823
[119]
Liu, D., Lu, S., Zhang, L., Huang, Y., Ji, M., Sun, X., et al. (2020) Yeast-Based Aβ1-15 Vaccine Elicits Strong Immunogenicity and Attenuates Neuropathology and Cognitive Deficits in Alzheimer’s Disease Transgenic Mice. Vaccines, 8, Article No. 351. https://doi.org/10.3390/vaccines8030351
[120]
Brigham and Women’s Hospital (2021) Brigham and Women’s Hospital Launches Clinical Trial of Nasal Vaccine for Alzheimer’s Disease. Brigham and Women’s Hospital.
[121]
Cao, W., Kim, J.H., Reber, A.J., Hoelscher, M., Belser, J.A., Lu, X., et al. (2017) Nasal Delivery of Protollin-Adjuvanted H5N1 Vaccine Induces Enhanced Systemic as Well as Mucosal Immunity in Mice. Vaccine, 35, 3318-3325. https://doi.org/10.1016/j.vaccine.2017.05.004
[122]
Saresella, M., Calabrese, E., Marventano, I., Piancone, F., Gatti, A., Farina, E., et al. (2012) A Potential Role for the PD1/PD-L1 Pathway in the Neuroinflammation of Alzheimer’s Disease. NeurobiologyofAging, 33, 624.e11-624.e22. https://doi.org/10.1016/j.neurobiolaging.2011.03.004
[123]
Xing, Z., Zuo, Z., Hu, D., Zheng, X., Wang, X., Yuan, L., et al. (2021) Influenza Vaccine Combined with Moderate-Dose PD1 Blockade Reduces Amyloid-β Accumulation and Improves Cognition in APP/PS1 Mice. Brain, Behavior, andImmunity, 91, 128-141. https://doi.org/10.1016/j.bbi.2020.09.015
[124]
Gilman, S., Koller, M., Black, R.S., Jenkins, L., Griffith, S.G., Fox, N.C., et al. (2005) Clinical Effects of Aβ Immunization (AN1792) in Patients with AD in an Interrupted Trial. Neurology, 64, 1553-1562. https://doi.org/10.1212/01.wnl.0000159740.16984.3c
[125]
Masliah, E., Hansen, L., Adame, A., Crews, L., Bard, F., Lee, C., et al. (2005) Aβ Vaccination Effects on Plaque Pathology in the Absence of Encephalitis in Alzheimer Disease. Neurology, 64, 129-131. https://doi.org/10.1212/01.wnl.0000148590.39911.df
[126]
Wiessner, C., Wiederhold, K.-., Tissot, A.C., Frey, P., Danner, S., Jacobson, L.H., et al. (2011) The Second-Generation Active aβ Immunotherapy CAD106 Reduces Amyloid Accumulation in APP Transgenic Mice While Minimizing Potential Side Effects. Journal of Neuroscience, 31, 9323-9331. https://doi.org/10.1523/jneurosci.0293-11.2011
[127]
Graf, A., Andreasen, N., Riviere, M.E., Ros, J., Moreau, J., Sevigny, J., et al. (2010) P3‐275: Optimization of the Treatment Regimen with Active Aβ Immunotherapy CAD106 in Alzheimer Patients. Alzheimer’s&Dementia, 6, S532. https://doi.org/10.1016/j.jalz.2010.05.1775
[128]
Winblad, B. (2008) S2‐04-06: Safety, Tolerability and Immunogenicity of the Aβ Immunotherapeutic Vaccine CAD106 in a First‐in‐Man Study in Alzheimer Patients. Alzheimer’s&Dementia, 4, T128. https://doi.org/10.1016/j.jalz.2008.05.295
[129]
Winblad, B.G., Minthon, L., Floesser, A., Imbert, G., Dumortier, T., He, Y., et al. (2009) O2‐05‐05: Results of the First‐in‐Man Study with the Active Aβ Immunotherapy CAD106 in Alzheimer Patients. Alzheimer’s&Dementia, 5, P113-P114. https://doi.org/10.1016/j.jalz.2009.05.356
[130]
Davtyan, H., Hovakimyan, A., Kiani Shabestari, S., Antonyan, T., Coburn, M.A., Zagorski, K., et al. (2019) Testing a MultiTEP-Based Combination Vaccine to Reduce Aβ and Tau Pathology in Tau22/5xfad Bigenic Mice. Alzheimer’s Research & Therapy, 11, Article No. 107. https://doi.org/10.1186/s13195-019-0556-2
[131]
Serrano-Pozo, A., Frosch, M.P., Masliah, E. and Hyman, B.T. (2011) Neuropathological Alterations in Alzheimer Disease. ColdSpringHarborPerspectivesinMedicine, 1, a006189. https://doi.org/10.1101/cshperspect.a006189
[132]
Bloom, G.S. (2014) Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurology, 71, 505-508. https://doi.org/10.1001/jamaneurol.2013.5847
[133]
Uddin, M.S., Kabir, M.T., Tewari, D., Mamun, A.A., Mathew, B., Aleya, L., et al. (2020) Revisiting the Role of Brain and Peripheral Aβ in the Pathogenesis of Alzheimer’s Disease. JournaloftheNeurologicalSciences, 416, Article ID: 116974. https://doi.org/10.1016/j.jns.2020.116974
[134]
Beshir, S.A., Aadithsoorya, A.M., Parveen, A., Goh, S.S.L., Hussain, N. and Menon, V.B. (2022) Aducanumab Therapy to Treat Alzheimer’s Disease: A Narrative Review. International Journal of Alzheimer’s Disease, 2022, Article ID: 9343514. https://doi.org/10.1155/2022/9343514
[135]
Yiannopoulou, K.G., Anastasiou, A.I., Zachariou, V. and Pelidou, S. (2019) Reasons for Failed Trials of Disease-Modifying Treatments for Alzheimer Disease and Their Contribution in Recent Research. Biomedicines, 7, Article No. 97. https://doi.org/10.3390/biomedicines7040097
[136]
Shi, Y., Zhang, H., Song, Q., Yu, G., Liu, Z., Zhong, F., et al. (2022) Development of Novel 2-Aminoalkyl-6-(2-Hydroxyphenyl)pyridazin-3(2h)-One Derivatives as Balanced Multifunctional Agents against Alzheimer’s Disease. European Journal of Medicinal Chemistry, 230, Article ID: 114098. https://doi.org/10.1016/j.ejmech.2021.114098