Oncological hyperthermia is one of the most versatile forms of oncotherapy. It can complement every conventional treatment method and be applied to any tumorous cancer, irrespective of its stages and localization. Numerous technical realizations are conventionally compared by their thermal effect, measured by temperature. However, nonthermal (mainly electric) excitation effects are more recognized nowadays. The technical variants alter the synergy between thermal and nonthermal energy components. Nonthermal energy absorption-induced molecular mechanisms include essential behaviors like selectivity and immunogenicity. The nonthermal electromagnetic effects excite molecular changes, intracellular signals, gene expressions, and many other chemical reactions. Their synergy with thermal conditions is based on the Arrhenius law, which describes the rapid growth of chemical reactions with temperature. A unique technical realization of hyperthermia, modulated electrohyperthermia (mEHT) tries to optimize the thermal and nonthermal effects. The results look very perspective, containing the high accuracy of targeting the tumor cells, the immunogenic cell death, and the activation of tumor-specific immune reactions restoring the healthy immune surveillance to destroy the cancer.
References
[1]
D’Arsonval, A. (1893) Physiological Action of Currents of Great Frequency. In: Riley, W.H., Ed., Modern Medicine and Bacteriological World, Modern Medicine Publishing Co., 200-203.
[2]
Condello, M., D’Avack, G., Spugnini, E.P. and Meschini, S. (2022) Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors. Cancers, 14, Article 4341. https://doi.org/10.3390/cancers14174341
[3]
Dahl, O. and Overgaard, J. (1995) A Century with Hyperthermic Oncology in Scandinavia. Acta Oncologica, 34, 1075-1083. https://doi.org/10.3109/02841869509127234
[4]
McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. (2005) Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiological Reviews, 85, 943-978. https://doi.org/10.1152/physrev.00020.2004
[5]
Bear, M.F., Connors, B.W. and Paradiso, M.A. (2006) Neuroscience: Exploring the Brain. 3rd Edition, Lippincott.
[6]
Nordenstrom, B.W.E. (1983) Biologically Closed Electric Circuits: Clinical Experimental and Theoretical Evidence for an Additional Circulatory System. Nordic Medical Publications.
[7]
Nordenstrom, B.W.E. (1998) Exploring BCEC-Systems, (Biologically Closed Electric Circuits). Nordic Medical Publications.
[8]
Nordenström, B.E.W. (1978) Preliminary Clinical Trials of Electrophoretic Ionization in the Treatment of Malignant Tumors. IRCS Journal of Medical Science, 6, 537-540.
[9]
Nordenström, B.E.W. (1985) Electrochemical Treatment of Cancer. Annales de Radiologie, 28, 128-129.
[10]
Loewenstein, W.R. (1999) The Touchstone of Life, Molecular Information, Cell Com-munication and the Foundations of the Life. Oxford University Press, 298-304.
[11]
Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., et al. (2006) Electrical Signals Control Wound Healing through Phosphatidylinositol-3-Oh Kinase-γ and PTEN. Nature, 442, 457-460. https://doi.org/10.1038/nature04925
[12]
Becker, R.O. and Selden, G. (1985) The Body Electric, Electromagnetism and the Foundation of Life. William Morrow & Co.
[13]
Becker, R.O. (1990) Cross Currents. Jeremy P Tarcher Inc.
[14]
Nuccitelli, R., Nuccitelli, P., Li, C., Narsing, S., Pariser, D.M. and Lui, K. (2011) The Electric Field near Human Skin Wounds Declines with Age and Provides a Noninvasive Indicator of Wound Healing. Wound Repair and Regeneration, 19, 645-655. https://doi.org/10.1111/j.1524-475x.2011.00723.x
[15]
Lin, J.C. (1989) Electromagnetic Interaction with Biological Systems. Pergamon Press.
[16]
Bersani, F. (1999) Electricity and Magnetism in Biology and Medicine. Kluwer Academic/Plenum Publishers.
[17]
Adey, W.R. (1984) Nonlinear, Nonequilibrium Aspects of Electromagnetic Field Interactions at Cell Membranes. In: Adey, W.R. and Lawrence, A.F., Eds., NonlinearElectrodynamicsinBiologicalSystems, Springer, 3-22. https://doi.org/10.1007/978-1-4613-2789-9_1
[18]
Liboff, A.R. (2003) Ion Cyclotron Resonance in Biological Systems: Experimental Evidence. In: Stavroulakis, P., Ed., Biological Effects of Electromagnetic Fields, Springer Ver-lag, 76-113.
[19]
Liboff, A.R. (1985) Geomagnetic Cyclotron Resonance in Living Cells. Journal of Biological Physics, 13, 99-102. https://doi.org/10.1007/bf01878387
[20]
Lednev, V.V. (1991) Possible Mechanism for the Influence of Weak Magnetic Fields on Biological Systems. Bioelectromagnetics, 12, 71-75. https://doi.org/10.1002/bem.2250120202
[21]
Blanchard, J.P. and Blackman, C.F. (1994) Clarification and Application of an Ion Parametric Resonance Model for Magnetic Field Interactions with Biological Systems. Bioelectromagnetics, 15, 217-238. https://doi.org/10.1002/bem.2250150306
[22]
Giudice, E.D., Fleischmann, M., Preparata, G. and Talpo, G. (2002) On the “Unreasonable” Effects of ELF Magnetic Fields Upon a System of Ions. Bioelectromagnetics, 23, 522-530. https://doi.org/10.1002/bem.10046
[23]
Jacobson, J.I. (1991) A Look at the Possible Mechanism and Potential of Magneto Therapy. Journal of Theoretical Biology, 149, 97-119. https://doi.org/10.1016/s0022-5193(05)80074-8
[24]
Vincze, G., Szasz, A. and Liboff, A.R. (2008) New Theoretical Treatment of Ion Resonance Phenomena. Bioelectromagnetics, 29, 380-386. https://doi.org/10.1002/bem.20406
Reinhold, H.S. (1987) Effects of Hyperthermia on Tumour Microcirculation. In: Field, S.B. and Franconi, C., Eds., PhysicsandTechnologyofHyperthermia, Springer, 458-469. https://doi.org/10.1007/978-94-009-3597-6_21
[27]
Tanaka, Y. (2001) Thermal Responses of Microcirculation and Modification of Tumor Blood Flow in Treating the Tumors. In: Kosaka, M., Sugahara, T., Schmidt, K.L. and Simon, E., Eds., Thermotherapy for Neoplasia, Inflammation, and Pain, Springer, 408-419. https://doi.org/10.1007/978-4-431-67035-3_45
[28]
Reinhold, H.S. and Blachiewicz, B.B. (1978) Decrease in Tumor Microcirculation during Hyperthermia, In: Streffer, C., vanBeuningen, D., Dietzel, F., Röttinger, E., Robinson, J.E., Scherer, E., Seeber, S. and Trott, K.R., Eds., CancerTherapyby Hyperthermia and Radiation, Urban & Schwarzenberg, 231-232
[29]
Dudar, T.E. and Jain, R.K. (1984) Differential Response of Normal and Tumor Microcirculation to Hyperthermia. CancerResearch, 44, 605-612
[30]
Hudlicka, O. and Tyler, K.R. (1984) The Effect of Long‐Term High‐Frequency Stimulation on Capillary Density and Fibre Types in Rabbit Fast Muscles. TheJournalofPhysiology, 353, 435-445. https://doi.org/10.1113/jphysiol.1984.sp015345
[31]
Endrich, B. (2019) Morphologic and Hemodynamic Alterations in Capillaries during Hyperthermia. In: Anghileri, L. and Robert, J., Eds., HyperthermiainCancerTreatment, CRC Press, 17-47. https://doi.org/10.1201/9780429266546-2
[32]
Zant, G.V. (2019) Effects of Hyperthermia on Hematopoietic Tissues. In: Anghileri, L. and Robert, J., Eds., HyperthermiainCancerTreatment, CRC Press, 59-73. https://doi.org/10.1201/9780429266546-4
[33]
Hales, J.R.S. (2019) Aspects of Circulatory Responses in Animals Pertinent to the Use of Hyperthermia in Cancer Treatment. In: Anghileri, L. and Robert, J., Eds., HyperthermiainCancerTreatment, CRC Press, 49-58. https://doi.org/10.1201/9780429266546-3
[34]
Ingram, D.L. and Mount, L.E. (1975) Man and Animals in Hot Environments, Topics in Environmental Physiology and Medicine. Springer Verlag. https://doi.org/10.1007/978-1-4613-9368-9
[35]
Urano, M. (1994) Thermochemotherapy: From in Vitro and in Vivo Experiments to Potential Clinical Application. In: Urano, M. and Douple, E.B., Eds., Hyperthermia in Oncology, Routledge, 169-204.
[36]
Ohno, T., Sakagami, T., Shiomi, M., et al. (1993) Hyperthermai Therapy for Deep-regional Cancer: Thermochemotherapy, a Combination of Hyperthermia with Chemotherapy. In: Matsuda, T., Ed., Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, p 303-316.
[37]
Piantelli, M., Tatone, D., Castrilli, G., Savini, F., Maggiano, N., Larocca, L.M., et al. (2001) Quercetin and Tamoxifen Sensitize Human Melanoma Cells to Hyperthermia. MelanomaResearch, 11, 469-476. https://doi.org/10.1097/00008390-200110000-00005
[38]
Pilling, M.J. and Seakins, P.W. (1995) Reaction Kinetics. Oxford University Press.
[39]
Whitney, J., Carswell, W. and Rylander, N. (2013) Arrhenius Parameter Determination as a Function of Heating Method and Cellular Microenvironment Based on Spatial Cell Viability Analysis. InternationalJournalofHyperthermia, 29, 281-295. https://doi.org/10.3109/02656736.2013.802375
[40]
Ware, M.J., Krzykawska-Serda, M., Chak-Shing Ho, J., Newton, J., Suki, S., Law, J., et al. (2017) Optimizing Non-Invasive Radiofrequency Hyperthermia Treatment for Improving Drug Delivery in 4T1 Mouse Breast Cancer Model. ScientificReports, 7, Article No. 43961. https://doi.org/10.1038/srep43961
[41]
Yang, K., Huang, C., Chi, M., Chiang, H., Wang, Y., Hsia, C., et al. (2016) InVitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092. https://doi.org/10.18632/oncotarget.11444
[42]
Andocs, G., Rehman, M.U., Zhao, Q., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cells. CellDeathDiscovery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39
[43]
Andocs, G., Rehman, M.U. and Zhao, Q. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. BiologyandMedicine, 7, 1-9. https://doi.org/10.4172/0974-8369.1000247
[44]
Tsang, Y., Huang, C., Yang, K., Chi, M., Chiang, H., Wang, Y., et al. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMCCancer, 15, Article No. 708. https://doi.org/10.1186/s12885-015-1690-2
[45]
Qin, W., Akutsu, Y., Andocs, G., Suganami, A., Hu, X., Yusup, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. OncologyReports, 32, 2373-2379. https://doi.org/10.3892/or.2014.3500
[46]
Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia Part I. In Vitro Research. International Journal of Clinical Medicine, 15, 257-298.
[47]
Lee, S., Lorant, G., Grand, L. and Szasz, A.M. (2023) The Clinical Validation of Modulated Electro-Hyperthermia (MEHT). Cancers, 15, Article 4569. https://doi.org/10.3390/cancers15184569
Kaur, P., Hurwitz, M.D., Krishnan, S. and Asea, A. (2011) Combined Hyperthermia and Radiotherapy for the Treatment of Cancer. Cancers, 3, 3799-3823. https://doi.org/10.3390/cancers3043799
[50]
Kwon, S., Jung, S. and Baek, S.H. (2023) Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants, 12, Article 924. https://doi.org/10.3390/antiox12040924
[51]
Brüningk, S., Powathil, G., Ziegenhein, P., Ijaz, J., Rivens, I., Nill, S., et al. (2018) Combining Radiation with Hyperthermia: A Multiscale Model Informed by inVitro Experiments. JournaloftheRoyalSocietyInterface, 15, Article ID: 20170681. https://doi.org/10.1098/rsif.2017.0681
[52]
Datta, N.R., Ordóñez, S.G., Gaipl, U.S., Paulides, M.M., Crezee, H., Gellermann, J., et al. (2015) Local Hyperthermia Combined with Radiotherapy and-/or Chemotherapy: Recent Advances and Promises for the Future. Cancer Treatment Reviews, 41, 742-753. https://doi.org/10.1016/j.ctrv.2015.05.009
[53]
Phung, D.C., Nguyen, H.T., Phuong Tran, T.T., Jin, S.G., Yong, C.S., Truong, D.H., et al. (2019) Combined Hyperthermia and Chemotherapy as a Synergistic Anticancer Treatment. JournalofPharmaceuticalInvestigation, 49, 519-526. https://doi.org/10.1007/s40005-019-00431-5
[54]
Rao, W., Deng, Z. and Liu, J. (2010) A Review of Hyperthermia Combined with Radiotherapy/Chemotherapy on Malignant Tumors. CriticalReviews™inBiomedicalEngineering, 38, 101-116. https://doi.org/10.1615/critrevbiomedeng.v38.i1.80
[55]
Wiedermann, G.J., Feyerabend, T., Mentzel, M., et al. (1994) Thermochemotherapie: grunde fur die kombinationsbehandlung mit hyperthermia und chemotherapie. Fo-cusMUL, 11, 44-50.
[56]
Issels, R.D., Abdel-Rahman, S., Salat, C., et al. (1998) Neoadjuvant Chemotherapy Combined with Regional Hyperthermia (RHT) Followed by Surgery and Radiation in Primary Recurrent High-Risk Soft Tissue Sarcomas (HR STS) of Adults (Updated Report). Journal of Cancer Research and Clinical Oncology, 124, R105.
[57]
LeVeen, H.H., Rajagopalan, P.R., Vujic, I., et al. (1984) Radiofrequency Thermotherapy, Local Chemotherapy, and Arterial Occlusion in the Treatment of Nonresectable Cancer. The American Surgeon, 50, 61-65.
[58]
Okamura, K., Nakashima, K., Fukushima, Y., et al. (2004) Hyperthermia with Low Dose Chemotherapy for Advanced Non-Small-Cell Lung Cancer. The Kadota Fund International Forum 2004, Awaji Island, 14-18 June 2004, 31-32.
[59]
Franchi, F., Grassi, P., Ferro, D., Pigliucci, G., De Chicchis, M., Castigliani, G., et al. (2007) Antiangiogenic Metronomic Chemotherapy and Hyperthermia in the Palliation of Advanced Cancer. EuropeanJournalofCancerCare, 16, 258-262. https://doi.org/10.1111/j.1365-2354.2006.00737.x
[60]
Cole, K.S. (1968) Membranes, Ions and ImpulsesUniversity of California Press.
Haemmerich, D., Staelin, S.T., Tsai, J.Z., Tungjitkusolmun, S., Mahvi, D.M. and Webster, J.G. (2003) InVivo Electrical Conductivity of Hepatic Tumours. PhysiologicalMeasurement, 24, 251-260. https://doi.org/10.1088/0967-3334/24/2/302
[63]
Scholz, B. and Anderson, R. (2000) On Electrical Impedance Scanning-Principles and Simulations. Electromedica, 68, 35-44.
[64]
Szentgyorgyi, A. (1980) The Living State and Cancer. PhysiologicalChemistryandPhysics, 12, 99-110.
[65]
Szentgyorgyi, A. (1998) Electronic Biology and Cancer. Marcel Dekkerm.
[66]
Szentgyorgyi, A. (1968) Bioelectronics, a Study on Cellular Regulations, Defense and Cancer. Academic Press.
[67]
Sha, L., Ward, E.R. and Story, B. (2002) A Review of Dielectric Properties of Normal and Malignant Breast Tissue. ProceedingsIEEESoutheastCon 2002, Columbia, 5-7 April 2002, 457-462.
[68]
Smith, S.R., Foster, K.R. and Wolf, G.L. (1986) Dielectric Properties of VX-2 Carcinoma versus Normal Liver Tissue. IEEETransactionsonBiomedicalEngineering, 33, 522-524. https://doi.org/10.1109/tbme.1986.325740
[69]
Kotnik, T. and Miklavčič, D. (2000) Theoretical Evaluation of the Distributed Power Dissipation in Biological Cells Exposed to Electric Fields. Bioelectromagnetics, 21, 385-394. https://doi.org/10.1002/1521-186x(200007)21:5<385::aid-bem7>3.3.co;2-6
[70]
Loft, S.M., et al. (1992) Bioimpedance and Cancer Therapy. The 8thInternationalConferenceonElectricalBio-Impedance, Kuopio, 28-31 July 1992, 119-121.
[71]
Szasz, A. and Szasz, O. (2020) Time-Fractal Modulation of Modulated Electro-Hyperthermia (mEHT). In: Szasz, A., Ed., Challengesand Solutions of Oncological Hyperthermia, Cambridge Scholars, 377-415. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[72]
Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. OpenJournalofBiophysics, 11, 314-350. https://doi.org/10.4236/ojbiphy.2021.113011
[73]
Szasz, A. (2022) Time-Fractal Modulation—Possible Modulation Effects in Human Therapy. OpenJournalofBiophysics, 12, 38-87. https://doi.org/10.4236/ojbiphy.2022.121003
[74]
Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. JournalofRadiationandCancerResearch, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18
[75]
Pennock, B.E. and Schwan, H.P. (1969) Further Observations on the Electrical Properties of Hemoglobin-Bound Water. The Journal of Physical Chemistry, 73, 2600-2610. https://doi.org/10.1021/j100842a024
[76]
Pething, R. (1979) Dielectric, and Electronic Properties of Biological Materials. John Wiley & Sons.
[77]
Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). OpenJournalofBiophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016
[78]
Horváth, I., Multhoff, G., Sonnleitner, A. and Vígh, L. (2008) Membrane-Associated Stress Proteins: More than Simply Chaperones. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1778, 1653-1664. https://doi.org/10.1016/j.bbamem.2008.02.012
[79]
Minnaar, C.A. and Szasz, A. (2022) Forcing the Antitumor Effects of Hsps Using a Modulated Electric Field. Cells, 11, Article 1838. https://doi.org/10.3390/cells11111838
[80]
Szasz, A. (2021) The Capacitive Coupling Modalities for Oncological Hyperthermia. OpenJournalofBiophysics, 11, 252-313. https://doi.org/10.4236/ojbiphy.2021.113010
[81]
Ferenczy, G.L. and Szasz, A. (2020) Technical Challenges and Proposals in Oncological Hyperthermia. In: Szasz, A., Ed., Challengesand Solutions of Oncological Hyperthermia, Cambridge Scholars, 72-90. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[82]
Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article 901. https://doi.org/10.3390/cancers14040901
[83]
Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science. http://www.springer.com/gp/book/9789048194971
[84]
Szasz A. (2020) Challenges and Solutions of Oncological Hyperthermia. Cambridge Scholars Publishing. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[85]
Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, 323-336.
[86]
Szasz, A. (2013) Electromagnetic Effects in Nanoscale Range. In: Shimizu, T. and Kondo, T., Eds., CellularResponsetoPhysicalStressandTherapeuticApplications, Nova Science Publishers, 55-81.
[87]
Szasz, A. and Morita, T. (2012) Heat Therapy in Oncology, New Paradigm in Hyperthermia. Nippon Hvoronsha.
[88]
Szasz, A., Szasz, O. and Szasz, N. (2006) Physical Background and Technical Realizations of Hyperthermia. In: Szasz, A., Szasz, O. and Szasz, N., Eds., Hyperthermia in Cancer Treatment: A Primer, Springer, 27-59. https://doi.org/10.1007/978-0-387-33441-7_3
[89]
Lee, S., Fiorentini, G., Szasz, A.M., Szigeti, G., Szasz, A. and Minnaar, C.A. (2020) Quo Vadis Oncological Hyperthermia (2020)? Frontiers in Oncology, 10, Article 1690. https://doi.org/10.3389/fonc.2020.01690
[90]
Szasz, A. (2020) Challenges and Solutions of Oncological Hyperthermia. Cambridge Scholars. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[91]
Szasz, A. (2017) Oncothermia Is a Kind of Hyperthermia. Hot Topics: Temperature, Dose, Selectivity. OncothermiaJournal, 20, 105-120. http://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020_0.pdf
[92]
Szász, A.M., Lóránt, G., Szász, A. and Szigeti, G. (2023) The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-hyperthermia. OpenJournalofBiophysics, 13, 103-142. https://doi.org/10.4236/ojbiphy.2023.134007
[93]
Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., Vangu, M. and Baeyens, A. (2020) Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. FrontiersinOncology, 10, Article 376. https://doi.org/10.3389/fonc.2020.00376
[94]
Chi, M., Mehta, M.P., Yang, K., Lai, H., Lin, Y., Ko, H., et al. (2020) Putative Abscopal Effect in Three Patients Treated by Combined Radiotherapy and Modulated Electrohyperthermia. FrontiersinOncology, 10, Article 254. https://doi.org/10.3389/fonc.2020.00254