全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

旋流气浮装置流场分析及分离效率数值研究
Flow Field Analysis and Numerical Study on Separation Efficiency of Cyclone Air Flotation Device

DOI: 10.12677/met.2024.134040, PP. 343-352

Keywords: 旋流气浮,欧拉模型,处理量,分流比,分离效率
Cyclone Air Floatation
, Euler Model, Processing Capacity, Diversion Ratio, Separation Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文运用欧拉多相流模型对该设计旋流气浮装置内两相流流体动力学实施数值模拟,实际中旋流气浮过程中油滴和气泡相互作用,通过碰撞黏附形成油气混合相,本文简化油–气–水三相流动为油气混合相和水相流动,在给定油气混合相密度700 kg/m3条件下进行浓度场、速度场分析,探究操作参数处理量和分流比对该装置分离效率的影响,模拟结果显示:在含油污水处理量1 m3/h~2.2 m3/h范围内,处理量为1 m3/h时,除油效果最佳,之后随着处理量增加,除油效率下降;当出油口分流比在(0.04~0.16)范围内时,装置的除油效率随着出油口分流比增大而提高,但顶部出油口液体中的含油体积分数下降,综合考量出油口分流比为(0.12~0.16)时,该装置的除油效果较好。
This article uses the Euler multiphase flow model to numerically simulate the two-phase fluid dynamics in the designed cyclone air flotation device. In practice, the interaction between oil droplets and bubbles during the cyclone air flotation process forms an oil gas mixed phase through collision adhesion. This article simplifies the oil gas water three-phase flow into an oil gas mixed phase and a water phase flow. Under the given oil gas mixed phase density of 700 kg/m3, the concentration field and velocity field analysis are carried out to explore the influence of operating parameters, processing capacity, and diversion ratio on the separation efficiency of the device. The simulation results show that in the range of 1 m3/h~2.2 m3/h for oily wastewater treatment, the oil removal effect is optimal when the processing capacity is 1 m3/h, and then decreases with the increase of processing capacity; When the oil outlet diversion ratio is within the range of (0.04~0.16), the oil removal efficiency of the device increases with the increase of the oil outlet diversion ratio, but the volume fraction of oil in the liquid at the top oil outlet decreases. Taking into account the oil outlet diversion ratio of (0.12~0.16), the oil removal efficiency of the device is better.

References

[1]  马文杰, 贺煜峰, 杨宏旭, 等. 基于旋流气浮技术的除油工艺技术研究[J]. 现代化工, 2021, 41(S1): 347-351.
[2]  王江云, 魏浩然, 李佳奇, 等. 旋流气浮装置内流动规律数值模拟[J]. 石油学报(石油加工), 2023, 39(3): 587-598.
[3]  李佳奇. 旋流气浮装置流动规律分析及结构优化[D]: [硕士学位论文]. 北京: 中国石油大学, 2022.
[4]  王波, 陈家庆, 梁存珍, 等. 含油废水气浮旋流组合处理技术浅析[J]. 工业水处理, 2008, 28(4): 87-92.
[5]  高国华. 二次旋流气浮含油污水处理装置结构优化研究[D]: [硕士学位论文]. 青岛: 中国石油大学, 2018.
[6]  蔡小垒, 陈家庆, 刘英凡. 二次旋流强化型气旋浮技术的分离特性[J]. 环境工程学报, 2020, 14(5): 1234-1244.
[7]  陈家庆, 韩旭, 李锐锋. 含油污水处理用旋流气浮一体化设备的CFD数值模拟[J]. 环境工程学报, 2012, 6(4): 1087-1092.
[8]  蔡小垒. 气浮旋流一体化水处理技术理论及工程应用研究[D]: [博士学位论文]. 北京: 北京化工大学, 2017.
[9]  贺彦涛, 王玉环, 蔺爱国, 等. 旋流微气泡气浮除油过程的数值模拟[J]. 石油学报(石油加工), 2020, 36(2): 349-356.
[10]  朱梦影, 程涛, 孔冰, 等. 旋流气浮装置试验对比分析[J]. 当代化工, 2020, 49(7): 1468-1471.
[11]  陈家庆, 韩旭, 梁存珍, 等. 海上油田含油污水旋流气浮一体化处理设备及其应用[J]. 环境工程学报, 2012, 6(1): 87-93.
[12]  罗小明, 付浩, 潘悦文, 等. 低强度旋流气浮处理含油污水实验研究[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 149-154.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133