The constant need for high-strength materials in the construction industry promotes the research of additives that improve the properties of masonry materials. The use of allophane as an additive in concrete and mortar mixtures was implemented to improve their strength and waterproofing, respectively, using compression and water absorption tests according to their corresponding standards (ASTM C1231, ASTM D2938, and ASTM C1585). The samples were evaluated at different concentrations and curing ages. In addition, different sand/cement ratios were considered for the mortar. The results revealed that there was a 9.4% increase in compressive strength in concrete and a 23.7% reduction in water absorption in mortar for the 5:1 ratio. These changes would be the result of the interaction of the nanoporous additive in the atomic crystal structure of the material demonstrating the nanotechnological nature of allophane.
References
[1]
Wang, R., Zhang, Q. and Li, Y. (2022) Deterioration of Concrete under the Coupling Effects of Freeze–Thaw Cycles and Other Actions: A Review. Construction and Building Materials, 319, Article 126045. https://doi.org/10.1016/j.conbuildmat.2021.126045
[2]
Saedi, A., Jamshidi-Zanjani, A. and Darban, A.K. (2021) A Review of Additives Used in the Cemented Paste Tailings: Environmental Aspects and Application. Journal of Environmental Management, 289, Article 112501. https://doi.org/10.1016/j.jenvman.2021.112501
[3]
Flores-Lozano, E.S., López-de Juambelz, I.R., Velázquez-Vázquez, D., Moreno-Pérez, E. and Hernández-Ávila, J. (2021) Modificación del comportamiento del mortero con respecto a la humedad por adición de zeolita. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 9, 193-200. https://doi.org/10.29057/icbi.v9iespecial2.8008
[4]
Mendoza, J. (2018) Influencia Del Porcentaje, Tipo Y Dosificación De Microsílice En La Resistencia A La Compresión Y Capilaridad En Morteros Elaborados Con Cemento Tipo V.
[5]
Tobón, J.I., Restrepo Baena, O.J. and Payá Bernabeu, J.J. (2007) Adición de nanopartículas al cemento Portland. DYNA, 152, 277-291. https://revistas.unal.edu.co/index.php/dyna/article/view/930
[6]
Jimenez, E., López, A., Gonzáles, H., Calle, L., Ochoa, P. and Stahl, U. (2024) Físicoquímica de los Alofanos y sus aplicaciones en la refinación de crudo. Universidad Central del Ecuador, 2019. https://isbn.cloud/9789942945822/fisicoquimica-de-los-alofanos-y-sus-aplicaciones-en-la-refinacion-de-crudo/
[7]
Ortega, M. (2021) Análisis de propiedades físico—Mecánicas de lechadas de cemento con ‘alófano’ para la sección superficial de pozos de petróleo.
[8]
Kapeluszna, E., Szudek, W., Wolka, P. and Zieliński, A. (2021) Implementation of Alternative Mineral Additives in Low-Emission Sustainable Cement Composites. Materials, 14, Article 6423. https://doi.org/10.3390/ma14216423
[9]
Kujawa, W., Olewnik-Kruszkowska, E. and Nowaczyk, J. (2021) Concrete Strengthening by Introducing Polymer-Based Additives into the Cement Matrix—A Mini Review. Materials, 14, Article 6071. https://doi.org/10.3390/ma14206071
[10]
Santos, T., Almeida, J., Silvestre, J.D. and Faria, P. (2021) Life Cycle Assessment of Mortars: A Review on Technical Potential and Drawbacks. Construction and Building Materials, 288, Article 123069. https://doi.org/10.1016/j.conbuildmat.2021.123069
[11]
Gutiérrez de López, L. (2003) El concreto y otros materiales para la construcción. Universidad Nacional de Colombia.
[12]
American Society for Testing and Materials (2024) Standard Specification for Mortar for Unit Masonry.
[13]
Instituto Ecuatoriano de Normalización (2011) Cemento Hidraúlico. Requisitos de desempeño para cementos hidraúlicos.
[14]
INEN (2010) Morteros para unidades de mampostería. Requisitos.
[15]
ASTM (2023) Standard Specification for Concrete Aggregates.
[16]
ASTM (2023) Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate.
[17]
ASTM (2020) Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
[18]
ASTM (2024) Standard Test Method for Relative Density (Specific Gravity) and Absortion of Coarse Aggregate.
[19]
ASTM (2019) Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying.
[20]
ASTM (2017) Standard Test Method for Bulk Density (‘Unit Weight’) and Voids in Aggregate.
[21]
ASTM (2010) Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.
[22]
ASTM (2011) Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.
[23]
ASTM (2022) Designation: E11-22 Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves 1.
[24]
Khan, H., Yerramilli, A.S., D’Oliveira, A., Alford, T.L., Boffito, D.C. and Patience, G.S. (2020) Experimental Methods in Chemical Engineering: X-Ray Diffraction Spectroscopy—XRD. The Canadian Journal of Chemical Engineering, 98, 1255-1266. https://doi.org/10.1002/cjce.23747
[25]
Fatimah, S., Ragadhita, R., Husaeni, D.F.A. and Nandiyanto, A.B.D. (2021) How to Calculate Crystallite Size from X-Ray Diffraction (XRD) Using Scherrer Method. ASEAN Journal of Science and Engineering, 2, 65-76. https://doi.org/10.17509/ajse.v2i1.37647
[26]
ASTM (2018) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
[27]
ASTM (2023) Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders.
[28]
Paredes, D. and Jiménez, E. (2022) Uso de alófano en hormigón para mejorar su resistencia y tiempo de vida.
[29]
ASTM (2017) Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens.
[30]
ASTM (2020) Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes.
[31]
Andreo, S., Tutor, J., Cuquerella, M., Cotutor, J. and Garcia, R. (2022) Universitat Politècnica De València Instituto Universitario Mixto de Tecnología Química Síntesis de materiales microporosos para adsorción de gases.
[32]
Mohajerani, A., Burnett, L., Smith, J.V., Kurmus, H., Milas, J., Arulrajah, A., et al. (2019) Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials, 12, Article 3052. https://doi.org/10.3390/ma12193052
[33]
Wang, Y., Li, L., An, M., Sun, Y., Yu, Z. and Huang, H. (2022) Factors Influencing the Capillary Water Absorption Characteristics of Concrete and Their Relationship to Pore Structure. Applied Sciences, 12, Article 2211. https://doi.org/10.3390/app12042211
[34]
Rodríguez Diez, J. (2019) Contratos Especiales. Revista chilena de derecho privado, 32, 147-155. https://doi.org/10.4067/s0718-80722019000100147
[35]
Ajay, V. and Rajeev, C. (2012) Effect of Micro Silica on the Strength of Concrete with Ordinary Portland Cement. Research Journal of Engineering Sciences, 1, 1-4.
[36]
Li, Z., Cornelis, J., Linden, C.V., Van Ranst, E. and Delvaux, B. (2020) Neoformed Aluminosilicate and Phytogenic Silica Are Competitive Sinks in the Silicon Soil-Plant Cycle. Geoderma, 368, Article 114308. https://doi.org/10.1016/j.geoderma.2020.114308
[37]
Silva-Yumi, J., Cazorla Martínez, R., Serrano, C.M. and Lescano, G.C. (2021) Alofán, Una Nanopartícula Natural Presente En Andisoles Del Ecuador, Propiedades Y Aplicaciones Allophane, A Natural Nanoparticle Present in Andisoles of Ecuador, Properties and Applications. https://doi.org/10.17163/lgr.n33.2021.05
[38]
Slovenian Institute for Standardization (2023) SIST-EN-ISO-80004-1-2023.
[39]
Hakim, L., Dirgantara, M. and Nawir, M. (2019) Karakterisasi Struktur Material Pasir Bongkahan Galian Golongan C Dengan Menggunakan X-Ray Difraction (X-RD) Di Kota Palangkaraya. Jurnal Jejaring Matematika dan Sains, 1, 44-51. https://doi.org/10.36873/jjms.v1i1.136
[40]
Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R., Sukmafitri, A. and Zaen, R. (2020) Amorphous Content on the Photocatalytic Performance of Micrometer-Sized Tungsten Trioxide Particles. Arabian Journal of Chemistry, 13, 2912-2924. https://doi.org/10.1016/j.arabjc.2018.07.021
[41]
Airlangga, T.A., Matsue, N., Hanudin, E. and Johan, E. (2020) Phosphate Adsorption Capacity of Allophane from Two Volcanic Mountains in Indonesia. Journal of Tropical Soils, 25, 39-46. https://doi.org/10.5400/jts.2020.v25i1.39-46
[42]
Du, P., Yuan, P., Liu, J., Yang, Y., Bu, H., Wang, S., et al. (2020) Effects of Environmental Fe Concentrations on Formation and Evolution of Allophane in Al-Si-Fe Systems: Implications for Both Earth and Mars. Journal of Geophysical Research: Planets, 125, e2020JE006590. https://doi.org/10.1029/2020je006590
[43]
Wang, S., Du, P., Yuan, P., Liu, Y., Song, H., Zhou, J., et al. (2020) Structural Alterations of Synthetic Allophane under Acidic Conditions: Implications for Understanding the Acidification of Allophanic Andosols. Geoderma, 376, Article 114561. https://doi.org/10.1016/j.geoderma.2020.114561
[44]
la Manna, L.A., Buduba, C.G. and Irisarri, J.A. (2020) Volcanic Soils of Chubut Province, Patagonia, Argentina.
[45]
Sanz, D. (2022) El Reto Del Material=The Challenge of the Materia.